

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The asymptotic couple of the field of logarithmic transseries

ALGEBRA

Allen Gehret

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States

ARTICLE INFO

Article history: Received 5 May 2014 Available online 30 August 2016 Communicated by Steven Dale Cutkosky

Keywords: Asymptotic couples Logarithmic transseries Quantifier elimination

ABSTRACT

The derivation on the differential-valued field \mathbb{T}_{\log} of logarithmic transseries induces on its value group Γ_{\log} a certain map ψ . The structure (Γ_{\log}, ψ) is a divisible asymptotic couple. We prove that the theory $T_{\log} = \text{Th}(\Gamma_{\log}, \psi)$ admits elimination of quantifiers in a natural first-order language. All models (Γ, ψ) of T_{\log} have an important discrete subset $\Psi := \psi(\Gamma \setminus \{0\})$. We give explicit descriptions of all definable functions on Ψ and prove that Ψ is stably embedded in Γ .

© 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	2
2.	Abstract asymptotic couples	4
3.	Asymptotic integration	8
4.	The embedding lemma zoo	12
5.	The theory T_{log}	21
6.	Definable functions on Ψ	25
7.	Definable subsets of Ψ	32
8.	Final remarks	34
Ackno	owledgments	35
Refere	ences	35

E-mail address: agehret2@illinois.edu.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.08.016} 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.08.016} 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2$

1. Introduction

The differential-valued field \mathbb{T}_{\log} of logarithmic transseries is conjectured to have good model theoretic properties. As a partial result in this direction, and as a confidence building measure we prove here that at least its *asymptotic couple* has a good model theory: quantifier elimination, and stable embeddedness of a certain discrete part. We now describe the relevant objects and results in more detail.

Throughout, m and n range over $\mathbb{N} = \{0, 1, 2, ...\}$. See [5] for a definition of the differential-valued field \mathbb{T}_{\log} of logarithmic transseries. It is a field extension of \mathbb{R} containing elements $\ell_0, \ell_1, \ell_2, ...,$ to be thought of as $x, \log x, \log \log x, ...,$ and the elements of \mathbb{T}_{\log} are formal series with real coefficients and monomials $\ell_0^{r_0} \ell_1^{r_1} \cdots \ell_n^{r_n}$ (with arbitrary real exponents $r_0, ..., r_n$). For our purpose it is enough to know the following four things about \mathbb{T}_{\log} , its elements ℓ_n , and these monomials:

- 1. These monomials are the elements of a subgroup \mathfrak{L} of the multiplicative group of \mathbb{T}_{\log} , and their products are formed in the way suggested by their notation as power products. The elements of \mathfrak{L} are also known as *logarithmic monomials*. For $m \leq n$ we have $\ell_m = \ell_0^{r_0} \cdots \ell_n^{r_n}$ where $r_i = 0$ for all $i \neq m$ and $r_m = 1$.
- 2. The field \mathbb{T}_{\log} is equipped with a (Krull) valuation v that maps the group \mathfrak{L} isomorphically onto the (additively written) value group $v(\mathbb{T}_{\log}^{\times}) = \bigoplus_{n} \mathbb{R}e_{n}$, a vector space over \mathbb{R} with basis (e_{n}) , with

$$v(\ell_0^{r_0}\ell_1^{r_1}\cdots\ell_n^{r_n}) = -r_0e_0-\cdots-r_ne_n,$$

and made into an ordered group by requiring for nonzero $\sum_{i} r_i e_i$ that

$$\sum r_i e_i > 0 \iff r_n > 0$$
 for the least n such that $r_n \neq 0$

3. The field \mathbb{T}_{\log} is equipped with a derivation such that $\ell'_0 = 1, \ell'_1 = \ell_0^{-1}$, and in general $\ell_n^{\dagger} = \ell_0^{-1} \cdots \ell_n^{-1}$. Here $f^{\dagger} := f'/f$ denotes the logarithmic derivative of a nonzero element f of a differential field, obeying the useful identity $(fg)^{\dagger} = f^{\dagger} + g^{\dagger}$. In \mathbb{T}_{\log} ,

$$(\ell_0^{r_0}\ell_1^{r_1}\cdots\ell_n^{r_n})^{\dagger} = r_0\ell_0^{-1} + r_1\ell_0^{-1}\ell_1^{-1} + \cdots + r_n\ell_0^{-1}\cdots\ell_n^{-1}.$$

4. This derivation has the property that for nonzero $f \in \mathbb{T}_{\log}$ with $v(f) \neq 0$, the value v(f'), and thus $v(f^{\dagger})$, depends only on v(f).

Let Γ_{\log} be the above ordered abelian group $\bigoplus_n \mathbb{R}e_n$. For an arbitrary ordered abelian group Γ we set $\Gamma^{\neq} := \Gamma \setminus \{0\}$. By (4) the derivation of \mathbb{T}_{\log} induces maps

$$\gamma \mapsto \gamma' \text{ and } \gamma \mapsto \gamma^{\dagger} : \Gamma_{\log}^{\neq} \to \Gamma_{\log}$$

Download English Version:

https://daneshyari.com/en/article/4583571

Download Persian Version:

https://daneshyari.com/article/4583571

Daneshyari.com