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1. Introduction

Throughout this paper G is a finite group. Let S = S(G) denote the set of all sub-
groups of G. For a category K, we denote by Obj(K) the totality of objects in K, and by
Morg (2, y) the set of morphisms from z to y in K, where z, y € Obj(K), and by Mor(K)
the totality HI’yGObj(K) Morg (z,y). Let S denote the subgroup category of G' of which
the objects are all subgroups of G, i.e. Obj(S) = S, of which the morphisms from H € S
to K € S are all triples (H, g, K) consisting of g € G with 9H C K, where 9H = gHg ™ *,
and in which the composition (K,y, L) o (H,z, K) of morphisms (H,z, K) and (K,y, L)
is given by (H,yz, L).
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Let A denote the category of abelian groups whose morphisms are all group homo-
morphisms. Throughout this paper, let M = (M,, M*) : S — A be a Mackey functor on
G in the sense of A. Bak [2], where M, and M* are covariant and contravariant functors,
respectively, and M, (H) coincides with M*(H), and both are usually denoted by M (H)
for H € S.

Let B denote the category of associative rings with unity whose morphisms are all
ring homomorphisms preserving unity between objects, and whose weak morphisms are
all group homomorphisms between objects. Let F' = (Fy, F*) : S — B" be a Green ring
functor on G in the sense of A. Bak [2]. Thus F is a bifunctor, F*(f) and Fi(f) are a
morphism and a weak morphism in B*, respectively, for each f € Mor(S), and F' satisfies
the Mackey subgroup property and the Frobenius reciprocity law. For H € S, let 1y
denote the unity of the ring F'(H) (=F*(H)).

We recall that any Mackey functor on G is a Green module over the Burnside ring
functor A = (A., A*) : S — B" of G, i.e. A(H) is the Grothendieck group of the category
of finite H-sets for H € S, cf. [5,3,4]. As usual, M, (f) and F,(f) (resp. M*(f) and F*(f))
are denoted by f. (resp. f*) for f € Mor(S), and (H, e, K)., (H,e, K)*, (H,g,9H )., and
(H,g,9H)* are denoted by ind%, res® | c(g)«, and c(g)*, respectively, where e is the
identity element of G.

Let G be a subset of S. We call G lower closed if S(H) C G holds for all H € G. We
call G conjugation invariant if 9H € G holds for all H € G and g € G. In the following,
let G and H be lower closed and conjugation invariant subsets of S. Let &(G,G) denote
the full subcategory of S such that Obj(&(G,G)) = G and set G = (G, G). We similarly
define H for H, i.e. H = &(G, H). The direct limit M, (G) and the inverse limit M*(G)
of M for G are defined by
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cf. [1, p. 243]. The induction homomorphism ind§ : M,(G) — M(G) and the restriction
homomorphism res§ : M(G) — M*(H) are canonically given. Let wgﬂ denote the
composition M, (G) — M*(H) of indS and resg.

Let He = S(G) ~ {G} and Hg = 6(G,Hg). We remark that for any nontrivial
group G, the cokernel of indﬁG : Ad(He) @ Q —» A(G) ® Q is a Q-module with basis
{1¢ = [G/G]}, where Q is the field of rational numbers. Yasuhiro Hara found that for the
cartesian product G = C,, x---x (), =~ of cyclic groups C),, of order p;, where each p; is a
prime, the restriction homomorphism resﬁc : A(G) — A*(Hg) is surjective if and only if
the primes p1, .. ., pm are mutually distinct, i.e. G is cyclic. Masafumi Sugimura remarked
that wﬁc He - Ax(Hg) — A*(Hg) is surjective for G = Aj the alternating group on five
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