

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Direct limits and inverse limits of Mackey functors

Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-5360 Japan

ARTICLE INFO

Article history: Received 16 December 2015 Available online 9 September 2016 Communicated by Michel Broué

MSC: primary 19A22 secondary 57S17

Keywords: Mackey functor Green ring functor Burnside ring

ABSTRACT

Let G be a finite group, S the subgroup category of G, and M a Mackey functor on G. For full subcategories G and H of S, we have the direct limit $M_*(\mathbb{G})$ and the inverse limit $M^*(\mathbb{H})$ of M. In this paper we study relation between the canonical homomorphisms ind : $M_*(\mathbb{G}) \to M(G)$ and res : $M(G) \to M^*(\mathbb{H})$.

© 2016 Elsevier Inc. All rights reserved.

ALGEBRA

CrossMark

1. Introduction

Throughout this paper G is a finite group. Let S = S(G) denote the set of all subgroups of G. For a category K, we denote by Obj(K) the totality of objects in K, and by $Mor_{\mathbb{K}}(x,y)$ the set of morphisms from x to y in K, where $x, y \in Obj(K)$, and by Mor(K)the totality $\coprod_{x,y\in Obj(K)} Mor_{\mathbb{K}}(x,y)$. Let S denote the subgroup category of G of which the objects are all subgroups of G, i.e. Obj(S) = S, of which the morphisms from $H \in S$ to $K \in S$ are all triples (H, g, K) consisting of $g \in G$ with ${}^{g}H \subset K$, where ${}^{g}H = {}^{g}Hg^{-1}$, and in which the composition $(K, y, L) \circ (H, x, K)$ of morphisms (H, x, K) and (K, y, L)is given by (H, yx, L).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.09.002\\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.09.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.002\\ 0021\mathcal{eq:http://dx.do$

E-mail address: morimoto@ems.okayama-u.ac.jp.

Let A denote the category of abelian groups whose morphisms are all group homomorphisms. Throughout this paper, let $M = (M_*, M^*) : \mathbb{S} \to \mathbb{A}$ be a Mackey functor on G in the sense of A. Bak [2], where M_* and M^* are covariant and contravariant functors, respectively, and $M_*(H)$ coincides with $M^*(H)$, and both are usually denoted by M(H)for $H \in \mathcal{S}$.

Let \mathbb{B}^w denote the category of associative rings with unity whose morphisms are all ring homomorphisms preserving unity between objects, and whose weak morphisms are all group homomorphisms between objects. Let $F = (F_*, F^*) : \mathbb{S} \to \mathbb{B}^w$ be a Green ring functor on G in the sense of A. Bak [2]. Thus F is a bifunctor, $F^*(f)$ and $F_*(f)$ are a morphism and a weak morphism in \mathbb{B}^w , respectively, for each $f \in Mor(\mathbb{S})$, and F satisfies the Mackey subgroup property and the Frobenius reciprocity law. For $H \in S$, let 1_H denote the unity of the ring F(H) ($=F^*(H)$).

We recall that any Mackey functor on G is a Green module over the Burnside ring functor $A = (A_*, A^*) : \mathbb{S} \to \mathbb{B}^w$ of G, i.e. A(H) is the Grothendieck group of the category of finite H-sets for $H \in \mathcal{S}$, cf. [5,3,4]. As usual, $M_*(f)$ and $F_*(f)$ (resp. $M^*(f)$ and $F^*(f)$) are denoted by f_* (resp. f^*) for $f \in Mor(\mathbb{S})$, and $(H, e, K)_*$, $(H, e, K)^*$, $(H, g, {}^{g}H)_*$, and $(H, g, {}^{g}H)^*$ are denoted by ind_{H}^K , res_{H}^K , $c(g)_*$, and $c(g)^*$, respectively, where e is the identity element of G.

Let \mathcal{G} be a subset of \mathcal{S} . We call \mathcal{G} lower closed if $\mathcal{S}(H) \subset \mathcal{G}$ holds for all $H \in \mathcal{G}$. We call \mathcal{G} conjugation invariant if ${}^{g}H \in \mathcal{G}$ holds for all $H \in \mathcal{G}$ and $g \in G$. In the following, let \mathcal{G} and \mathcal{H} be lower closed and conjugation invariant subsets of \mathcal{S} . Let $\mathfrak{S}(G, \mathcal{G})$ denote the full subcategory of \mathbb{S} such that $Obj(\mathfrak{S}(G, \mathcal{G})) = \mathcal{G}$ and set $\mathbb{G} = \mathfrak{S}(G, \mathcal{G})$. We similarly define \mathbb{H} for \mathcal{H} , i.e. $\mathbb{H} = \mathfrak{S}(G, \mathcal{H})$. The direct limit $M_*(\mathbb{G})$ and the inverse limit $M^*(\mathbb{G})$ of M for \mathbb{G} are defined by

$$M_{*}(\mathbb{G}) = \left(\bigoplus_{H \in \mathcal{G}} M(H)\right) \middle/ \left\langle x - y \mid \begin{array}{c} x \in M(H), \ y \in M(K), \ f_{*}x = y \\ \text{for some } f \in \operatorname{Mor}_{\mathbb{G}}(H, K) \end{array} \right\rangle \text{ and}$$
$$M^{*}(\mathbb{G}) = \left\{ \left(x_{H}\right) \in \prod_{H \in \mathcal{G}} M(H) \mid \begin{array}{c} x_{H} = f^{*}x_{K} \text{ for all} \\ H, \ K \in \mathcal{G}, \ f \in \operatorname{Mor}_{\mathbb{G}}(H, K) \end{array} \right\},$$

cf. [1, p. 243]. The induction homomorphism $\operatorname{ind}_{\mathbb{G}}^{G} : M_{*}(\mathbb{G}) \to M(G)$ and the restriction homomorphism $\operatorname{res}_{\mathbb{H}}^{G} : M(G) \to M^{*}(\mathbb{H})$ are canonically given. Let $\psi_{\mathbb{G},\mathbb{H}}^{G}$ denote the composition $M_{*}(\mathbb{G}) \to M^{*}(\mathbb{H})$ of $\operatorname{ind}_{\mathbb{G}}^{G}$ and $\operatorname{res}_{\mathbb{H}}^{G}$.

Let $\mathcal{H}_G = \mathcal{S}(G) \setminus \{G\}$ and $\mathbb{H}_G = \mathfrak{S}(G, \mathcal{H}_G)$. We remark that for any nontrivial group G, the cokernel of $\operatorname{ind}_{\mathbb{H}_G}^G : A_*(\mathbb{H}_G) \otimes \mathbb{Q} \to A(G) \otimes \mathbb{Q}$ is a \mathbb{Q} -module with basis $\{1_G = [G/G]\}$, where \mathbb{Q} is the field of rational numbers. Yasuhiro Hara found that for the cartesian product $G = C_{p_1} \times \cdots \times C_{p_m}$ of cyclic groups C_{p_i} of order p_i , where each p_i is a prime, the restriction homomorphism $\operatorname{res}_{\mathbb{H}_G}^G : A(G) \to A^*(\mathbb{H}_G)$ is surjective if and only if the primes p_1, \ldots, p_m are mutually distinct, i.e. G is cyclic. Masafumi Sugimura remarked that $\psi_{\mathbb{H}_G,\mathbb{H}_G}^G : A_*(\mathbb{H}_G) \to A^*(\mathbb{H}_G)$ is surjective for $G = A_5$ the alternating group on five Download English Version:

https://daneshyari.com/en/article/4583573

Download Persian Version:

https://daneshyari.com/article/4583573

Daneshyari.com