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1. Introduction

The notion of weighted projective lines is introduced in [7,8], which gives a geometric 
treatment to the representation theory of the canonical algebras in the sense of [15]. We 
are interested in weighted projective lines of tubular type. Recall that the category of 
coherent sheaves over such a weighted projective line is derived equivalent to the module 
category over a tubular algebra of the same type.

It is known due to [7,11,2] that the category of coherent sheaves over a weighted pro-
jective line of tubular type is equivalent to the category of equivariant coherent sheaves 
over an elliptic curve with respect to a certain cyclic group action; compare [13]. This 
result explains well that the classification of indecomposable modules over a tubular 
algebra in [15,12] has similar features as the classification of indecomposable coherent 
sheaves over an elliptic curve in [1].

In this paper, we show that the categories of coherent sheaves over weighted projective 
lines of different tubular types are related to each other, via the equivariantization with 
respect to certain cyclic group actions. Indeed, these cyclic groups are of order two or 
three, and the actions are the degree-shift actions, which are induced from the grading 
on the homogeneous coordinate algebras. Here, the equivariantization means forming the 
category of equivariant objects for a given finite group action on a category; compare 
[14,4,5].

Let us describe the main results of this paper. Let k be an algebraically closed field, 
whose characteristic is different from two or three. According to the types, weighted 
projective lines X of tubular type are denoted by X(2, 2, 2, 2; λ), X(3, 3, 3), X(4, 4, 2) and 
X(6, 3, 2), respectively. Here, λ ∈ k is not 0 or 1. The Auslander–Reiten translation on the 
category coh-X of coherent sheaves over X is induced from the degree-shift automorphism 
by the dualizing element �ω, which is an element in the grading group of the homogeneous 
coordinate algebra of X.

In the tubular types, the dualizing element �ω has order 2, 3, 4 and 6, according to 
their types. By the degree-shift automorphisms, we have a strict action on coh-X by the 
cyclic group Z�ω and also by its subgroup. For a finite group G and a (strict) G-action 
on a category A, we denote by AG the category of equivariant objects. In particular, we 
have the category (coh-X)G for any subgroup G ⊆ Z�ω.

The following theorem combines Propositions 3.2, 3.4 and 3.6. Here, we fix ε ∈ k

satisfying ε2 − ε + 1 = 0.

Theorem. Keep the notation and assumptions as above. Denote by �ω the dualizing ele-
ment in the grading group of the homogeneous coordinate algebra of X. Then we have 
the following equivalences of categories.

(1) (coh-X(4, 4, 2))Z(2�ω) ∼−→ coh-X(2, 2, 2, 2; −1).
(2) (coh-X(6, 3, 2))Z(2�ω) ∼−→ coh-X(2, 2, 2, 2; ε).
(3) (coh-X(6, 3, 2))Z(3�ω) ∼−→ coh-X(3, 3, 3). �
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