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We consider a Sklyanin algebra S with 3 generators, which
is the quadratic algebra over a field K with 3 generators z,
y, z given by 3 relations pxy + qyx + rzz = 0, pyz + qzy +
rex = 0 and pzx +qrz+ryy = 0, where p, g, € K. This class
of algebras enjoyed much of attention, in particular, using
tools from algebraic geometry, Feigin, Odesskii [15], and Artin,
Tate and Van den Bergh (3], showed that if at least two of
the parameters p, ¢ and r are non-zero and at least two of
three numbers p3, ¢° and r3 are distinct, then S is Koszul
and has the same Hilbert series as the algebra of commutative
polynomials in 3 variables.

It became commonly accepted, that it is impossible to achieve
the same objective by purely algebraic and combinatorial
means, like the Grobner basis technique. The main purpose
of this paper is to trace the combinatorial meaning of the
properties of Sklyanin algebras, such as Koszulity, PBW, PHS,
Calabi—Yau, and to give a new constructive proof of the above
facts due to Artin, Tate and Van den Bergh.

Further, we study a wider class of Sklyanin algebras, namely
the situation when all parameters of relations could be
different. We call them generalized Sklyanin algebras. We
classify up to isomorphism all generalized Sklyanin algebras
with the same Hilbert series as commutative polynomials on
3 variables. We show that generalized Sklyanin algebras in
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general position have a Golod—Shafarevich Hilbert series (with
exception of the case of field with two elements).
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

It is well-known that algebras arising in string theory, from the geometry of Calabi-
Yau manifolds, that is, various versions of Calabi—Yau algebras, enjoy the potentiality-
like properties. This in essence comes from the symplectic structure on the manifold.
The notion of noncommutative potential was first introduced by Kontsevich in [13]. Let
F = C(z1,...,xy), then the quotient vector space F,. = F/[F, F] has a simple basis
labeled by cyclic words in the alphabet z1,...,z,. Foreach j = 1,...,nin [13] it was in-

troduced a linear map %j : Foye — F defined by its action on monomials ® = z;, ... x;
by

n

0P
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So, for any element ® € F,,., which is called a potential, one can define a collection of
elements % for 1 <14 < n. An algebra which has a presentation:

oD
u-c<x1,...,xn>/{g}
i) 1<i<n
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