

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Some generalizations of preprojective algebras and their properties

Louis de Thanhoffer de Volcsey*, Dennis Presotto*

ARTICLE INFO

Article history: Received 29 August 2016 Available online 11 October 2016 Communicated by Michel Van den Bergh

Keywords: Non-commutative algebras Preprojective algebras

ABSTRACT

In this note we consider a notion of relative Frobenius pairs of commutative rings S/R. To such a pair, we associate an \mathbb{N} -graded R-algebra $\Pi_R(S)$ which has a simple description and coincides with the preprojective algebra of a quiver with a single central node and several outgoing edges in the split case. If the rank of S over R is 4 and R is Noetherian, we prove that $\Pi_R(S)$ is itself Noetherian and finite over its center and that each $\Pi_R(S)_d$ is finitely generated projective. We also prove that $\Pi_R(S)$ is of finite global dimension if R and S are regular.

© 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	151
	1.1. Definitions	151
	1.2. Statement of the results	154
2.	Preliminaries	155
3.	Computing $\operatorname{rk}(\Pi_R(S)_d)$	158
4.	Base change for $Z(\Pi_R(S))$ and $\operatorname{rk}(Z(\Pi_R(S))_d)$	164
5.	$\Pi_R(S)$ is Noetherian and finite over its center	171
6.	The global dimension of $\Pi_R(S)$	173
7.	Explicit computations for $S = \frac{k[s,t]}{(s^2,t^2)}$	175

E-mail addresses: louis.dethanhofferdevolcsey@utoronto.ca (L. de Thanhoffer de Volcsey), dennis.presotto@uhasselt.be (D. Presotto).

^{*} Corresponding authors.

7.1.	Proof of Lemma 3.3																			 								 47	6
7.2.	Proof of Lemma 4.8																			 								 47	7
7.3.	Proof of Lemma 5.5																			 								 48	1
Acknowledgments														 								 48	2						
References																				 								 48	2
recrei circos .			٠.		•	٠.	٠.	•	٠.	•	٠.	•	٠.	•	٠.	•	•	 •	•	 	•	•	•	 •	•	•	•	 	

1. Introduction

1.1. Definitions

For the purposes of this paper, we consider pairs of commutative rings R, S equipped with a map $R \longrightarrow S$. We often write such a pair as S/R. We will always assume R is Noetherian, although some of the results also hold in greater generality.

Definition 1.1. We say that S/R is relative Frobenius of rank n if:

- S is a free R-module of rank n.
- $\operatorname{Hom}_R(S,R)$ is isomorphic to S as S-module.

Remark 1.2.

- (i) It is clear that if R is a field, a relative Frobenius pair coincides with a finite dimensional Frobenius algebra in the classical sense.
- (ii) Let e_1, \ldots, e_n be any basis for S as an R-module. Then the second condition is equivalent to the existence of a $\lambda \in \operatorname{Hom}_R(S, R)$ such that the R-matrix $(\lambda(e_i e_j))_{i,j}$ is invertible.
- (iii) We may equally well assume that S/R is projective of rank n. However all results we prove may be reduced to the free case by suitably localizing R.

We shall need the following notation: for a relative Frobenius pair S/R, let $M:={}_RS_S$. This R-S-bimodule can be viewed as an $R \oplus S$ bimodule by letting the R-component act on the left and the S-component on the right, the other actions being trivial. Similarly, we let $N:={}_SS_R$ and view it as an $R \oplus S$ -bimodule by only letting the S-component act on the left and the R-component act on the right, the other actions again begin trivial. We now define

$$T(R,S) := T_{R \oplus S}(M \oplus N)$$

Note that by construction, we have $M \otimes_{R \oplus S} M = N \otimes_{R \oplus S} N = 0$, hence

$$T(R,S)_2 = (M_{R \oplus S}N) \oplus (N \otimes_{R \oplus S} M) = ({}_RS \otimes_S S_R) \oplus ({}_SS \otimes_R S_R)$$

Download English Version:

https://daneshyari.com/en/article/4583591

Download Persian Version:

https://daneshyari.com/article/4583591

<u>Daneshyari.com</u>