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In this work we consider the general numerical AA-semigroup, 
i.e., semigroups consisting of all non-negative integer linear 
combinations of relatively prime positive integers of the form 
a, a +d, a +2d, . . . , a +kd, c. We first prove that, in contrast to 
arbitrary numerical semigroups, there exists an upper bound 
for the type of AA-semigroups that only depends on the 
number of generators of the semigroup. We then present 
two characterizations of pseudo-symmetric AA-semigroups. 
The first one leads to a polynomial time algorithm to decide 
whether an AA-semigroup is pseudo-symmetric. The second 
one gives a method to construct pseudo-symmetric AA-
semigroups and provides explicit families of pseudo-symmetric 
semigroups with arbitrarily large number of generators.
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1. Introduction

This paper is a continuation of the paper [3]. For a numerical semigroup S, we recall 
that the Frobenius number g = g(S) is the largest integer not in S, and the genus
N = N(S) is the number of non-negative integers not in S. The semigroup S is symmetric
if

S ∪ (g − S) = Z,

where g − S = {g − s | s ∈ S}. The semigroup is pseudo-symmetric if the Frobenius 
number g is even and

S ∪ (g − S) = Z \ {g/2}. (1)

It is well known that S is symmetric if and only if g = 2N −1. Similarly, it is also known 
that S is pseudo-symmetric if and only if

g = 2N − 2. (2)

We include an easy proof of this result in Section 2 (Lemma 2.2).
Set Δ(S) = 2N − 1 − g. Then S is symmetric if and only if Δ(S) = 0, and pseudo-

symmetric if and only if Δ(S) = 1. The numerical semigroup S is irreducible if it is not 
the intersection of two strictly larger numerical semigroups. It now follows from [1,2,5]
that S is irreducible if and only if Δ(S) ≤ 1.

For a semigroup S we set S ′ = {x /∈ S | x +s ∈ S for all s ∈ S}. The elements of S ′ are 
usually called pseudo-Frobenius numbers and the number of elements of S ′ is called the 
type of S and denoted by type(S). We notice that g is always a pseudo-Frobenius number. 
Moreover, by [2, Proposition 2] S is symmetric if and only if S ′ = {g}, or equivalently, 
if the type of S is 1. Also, S is pseudo-symmetric if and only if S ′ = {g, g/2}, which 
implies that every pseudo-symmetric semigroup has type 2.

The Apéry set of S with respect to a non-zero m ∈ S is defined as

Ap(S;m) = {s ∈ S | s−m /∈ S}.

An Apéry set of a semigroup S is very difficult to determine in general. This set contains 
many relevant information about the semigroup. As we shall point out, in Section 2, all 
the above mentioned parameters related to S can be expressed in terms of the Apéry set 
of S with respect to any non-zero m ∈ S.

In this paper we focus our attention on numerical AA-semigroups consisting of all 
non-negative integer linear combinations of relatively prime positive integers a, a +d, a +
2d, . . . , a + kd, c, where also a, d, k, c are positive integers. In [4], Rødseth presented 
“semi-explicit” formulas for Ap(S; a), g(S) and N(S) when S is an AA-semigroup.
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