

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Maximal group actions on compact oriented surfaces

ALGEBRA

Valerie Peterson^{a,1}, Jacob Russell^{b,1}, Aaron Wootton^{a,*,1}

^a University of Portland, 5000 Willamette Blvd., Portland, OR 97203, USA
^b CUNY Graduate Center, 365 5th Ave, 8th Fl, New York, NY 10016, USA

A R T I C L E I N F O

Article history: Received 21 December 2015 Available online 14 October 2016 Communicated by E.I. Khukhro

Keywords: Automorphism Compact Riemann surface Mapping class group

ABSTRACT

Suppose S is a compact oriented surface of genus $\sigma \geq 2$ and C_p is a group of orientation preserving automorphisms of S of prime order $p \geq 5$. We show that there is always a finite supergroup $G > C_p$ of orientation preserving automorphisms of S except when the genus of S/C_p is minimal (or equivalently, when the number of fixed points of C_p is maximal). Moreover, we exhibit an infinite sequence of genera within which any given action of C_p on S implies C_p is contained in some finite supergroup and demonstrate for genera outside of this sequence the existence of at least one C_p -action for which C_p large σ).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A finite group G is said to act in an orientation preserving manner on a compact oriented surface S of genus $\sigma \geq 2$ if there is an injection

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.10.004 \\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.10.004 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.10.004 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.10.004 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.10.004 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.10.004 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2016.1004 \\ 0021\m$

^{*} Principal corresponding author.

E-mail addresses: petersov@up.edu (V. Peterson), jrussellmadonia@gradcenter.cuny.edu (J. Russell), wootton@up.edu (A. Wootton).

¹ Partially supported by NSF grant DMS-1157105.

$$\epsilon : G \hookrightarrow \operatorname{Homeo}^+(S)$$

from G into the group of orientation preserving homeomorphisms. We denote such an action by the ordered pair (G, ϵ) , though when unambiguous we write simply G. Two actions (G, ϵ_1) , (G, ϵ_2) are said to be *topologically equivalent* if their images $\epsilon_1(G)$ and $\epsilon_2(G)$ are conjugate in Homeo⁺(S).

In the following, we determine when a cyclic group C_p of prime order $p \geq 5$ of orientation preserving homeomorphisms of a surface S is *finitely maximal*, meaning there is no proper finite supergroup $G \leq \text{Homeo}^+(S)$ containing C_p . We show that when such an action exists the genus of S/C_p is minimal (or equivalently, the number of fixed points of the C_p -action is maximal). Following this we show that, for sufficiently large genus, there exists a finitely maximal C_p -action on a surface of genus σ if and only if $\sigma \not\equiv \frac{p-3}{2} \left(\mod \frac{p-1}{2} \right)$.

Though an interesting problem in its own right, there are a number of other motivations for this work. For example, in the context of the moduli space \mathcal{M}_{σ} of compact Riemann surfaces of genus σ , there is widespread interest in describing the branch locus, \mathcal{B}_{σ} , which is the subset of \mathcal{M}_{σ} of surfaces with non-trivial automorphisms. We define $\mathcal{M}_{\sigma}^{(G,\epsilon)} \subset \mathcal{M}_{\sigma}$ to be the set of surfaces whose full group of conformal automorphisms is topologically equivalent to (G, ϵ) , and $\overline{\mathcal{M}}_{\sigma}^{(G,\epsilon)}$ to be the set of surfaces whose full group of conformal automorphisms contains (G, ϵ) . In [5], Broughton showed that the sets $\{\mathcal{M}_{\sigma}^{(G,\epsilon)}\}$ form a stratification of \mathcal{B}_{σ} known as the *equisymmetric stratification*. A first step in describing this stratification is distinguishing between $\mathcal{M}_{\sigma}^{(G,\epsilon)}$ and $\overline{\mathcal{M}}_{\sigma}^{(G,\epsilon)}$; the following results represent a significant step in this direction for $G = C_p$ as well as extending current work ([2]) on identifying the isolated strata of \mathcal{B}_{σ} . For further reading on the branch locus of moduli space, see also [1,3,10,11,14].

This work also has implications for the connections between topological group actions and subgroups of the mapping class group. Specifically, if \mathfrak{M}_{σ} denotes the mapping class group in genus σ , then there is a natural one-to-one correspondence between conjugacy classes of finite subgroups of \mathfrak{M}_{σ} and equivalence classes of finite topological group actions on a smooth oriented surface of genus σ . Moreover, if H < G both act on a surface of genus σ , then we have the corresponding containment in \mathfrak{M}_{σ} . As such, our results allow one to determine when a given conjugacy class in \mathfrak{M}_{σ} of subgroups isomorphic to C_p is finitely maximal in \mathfrak{M}_{σ} . See [7,19] for other recent work in this area.

Perhaps the most important consequence of the following work is also the most direct one: it contributes significantly to the eventual goal of a complete classification of finitely maximal C_p -actions. Specifically, it was shown in [4] that for sufficiently large σ , the number of distinct quotient genera S/C_p for C_p -actions on a surface S of genus σ is linear in σ (though this can also be derived from Theorem 4 below). Theorem 5 therefore implies that when classifying maximal actions one need only consider a single quotient genus, thereby greatly reducing the complexity of the problem. Download English Version:

https://daneshyari.com/en/article/4583595

Download Persian Version:

https://daneshyari.com/article/4583595

Daneshyari.com