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In this note, it is shown that a finite group G is solvable if for 
each odd prime divisor p of |G|, |Irr(B0(G)2) ∩ Irr(B0(G)p)|
≤ 2, where Irr(B0(G)p) is the set of complex irreducible char-
acters of the principal p-block B0(G)p of G. Also, the structure 
of such groups is investigated. Examples show that the bound 
2 is best possible.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The block distributions of complex irreducible characters of a finite group have been 
recently investigated across distinct primes in the modular representation theory of finite 
groups. For instance, G. Navarro and W. Willems [25] considered the question when a 
p-block is a q-block. After a few years, C. Bessenrodt, G. Malle and J. B. Olsson [2] intro-
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duced the concept of separability of characters by blocks, and G. Navarro, A. Turull and 
T. R. Wolf [24] discussed solvable groups that are block separated. Later, C. Bessenrodt 
and the second author [3] investigated separations of characters by principal blocks of a 
finite group. It turns out that the intersections of principal blocks of a finite group have 
an influence on the structure of the group.

Let G be a finite group and Irr(G) the set of complex irreducible characters of G. Let 
p and q be two distinct prime divisors of |G|. Denote by B0(G)p and Irr(B0(G)p) the 
principal p-block of G and the set of complex irreducible characters of G contained in 
B0(G)p, respectively. In this note, we focus on finite groups G with small principal block 
intersections and provide a criterion for a finite group to be solvable.

Theorem 1.1. Let G be a finite group. Suppose that for each odd prime divisor p of |G|, 
|Irr(B0(G)2) ∩ Irr(B0(G)p)| ≤ 2. Then G is solvable.

With an application of Theorem 1.1, we have the following result.

Theorem 1.2. Let G be a finite group. Suppose that for each odd prime divisor p of |G|, 
|Irr(B0(G)2) ∩ Irr(B0(G)p)| ≤ 2. Then G is 2-nilpotent.

Proof. By Theorem 1.1, G is solvable. If |Irr(B0(G)2) ∩ Irr(B0(G)p)| = 1 then by [3, 
Proposition 2.1], G = O2′(G)Op′(G); and if |Irr(B0(G)2) ∩ Irr(B0(G)p)| = 2 then since 
G/Op′(G) has a unique p-block, we have

|Irr(G/O2′(G)Op′(G))| = |Irr(G/O2′(G)) ∩ Irr(G/Op′(G))| (1.1)

= |Irr(B0(G)2) ∩ Irr(B0(G)p)| (1.2)

= 2 (1.3)

so that G/O2′(G)Op′(G) has exactly two conjugacy classes. Note that C2 is the only 
group with two conjugacy classes up to isomorphism. This is because if a finite group 
H has exactly two conjugacy classes then H − {1} is a conjugacy class, which implies 
(|H| − 1) | |H| and so |H| = 2. Therefore, |G/O2′(G)Op′(G)| = 2. By the choice of p, we 
conclude that O2′(G) contains all Sylow p-subgroups of G for each odd prime divisor p
of |G|. Hence O2′(G) is a normal 2-complement of G, and thus G is 2-nilpotent. �

In the following we consider an important special case of Theorem 1.1. For the purpose 
of convenience, we define

αp,q(G) = |Irr(B0(G)p) ∩ Irr(B0(G)q)|

and

α(G) = max{αp,q(G) | p, q are distinct prime divisors of |G|}.
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