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We explore a natural extension of braid arrangements in the 
context of determinantal arrangements. We show that these 
determinantal arrangements are free divisors. Additionally, we 
prove that free determinantal arrangements defined by the 
minors of 2 ×n matrices satisfy nice combinatorial properties.
We also study the topology of the complements of these 
determinantal arrangements, and prove that their higher 
homotopy groups are isomorphic to those of S3. Furthermore, 
we find that the complements of arrangements satisfying 
those same combinatorial properties above have Poincaré 
polynomials that factor nicely.
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1. Introduction

In this paper, we investigate a family of hypersurfaces known as determinantal ar-
rangements. Determinantal arrangements are unions of hypersurfaces defined by the 
minors of a matrix of indeterminates. We focus on determinantal arrangements defined 
by the 2-minors of a 2 ×n generic matrix. Since these determinantal arrangements can be 
thought of as natural generalizations of braid arrangements and graphic arrangements, 
we aim to extend the results known for these hyperplane arrangements to our new set-
ting. In particular, we study the freeness of these arrangements, and the topology of 
their complements.

Let D be a divisor in an n-dimensional complex analytic manifold X. The module of 
logarithmic derivations DerX(− logD) := {θ ∈ DerX |θ(OX(−D)) ⊆ OX(−D)} are the 
vector fields on X that are tangent to the smooth points of D. If DerX(− logD) is locally 
free, then D is called a free divisor.

Free divisors were first introduced by Saito [12], motivated by his study of the dis-
criminants of versal deformations of isolated hypersurface singularities. The study of free 
divisors coming from discriminants of versal deformations has since been a driving force 
in the theory of singularities (see [9,2,19,18,17]).

Aside from versal deformations, free divisors show up naturally in many different 
settings. For example, many of the classically arising hyperplane arrangements are free 
(see [10]). This includes braid arrangements and all Coxeter arrangements.

In general, it is not clear which divisors are free and which are not. Naturally, one 
might be interested in freeness for arrangements of more general hypersurfaces. For 
example, Schenck and Tohǎneanu [14] give conditions for when an arrangement of lines 
and conics on P2 is free.

For determinantal arrangements, Buchweitz and Mond [3] showed that the arrange-
ment defined by the product of the maximal minors of a n × (n + 1) matrix of indeter-
minates is free. More recently, Damon and Pike [5] showed that certain determinantal 
arrangements coming from symmetric, skew-symmetric and square generic matrices are 
free and have complements that are K(π, 1). In both of these cases, the arrangements 
turn out to be linear free divisors (i.e. the basis for DerX(− logD) is generated by linear 
vector fields). The vector fields arising in these situations correspond to matrix group ac-
tions on the generic matrix which stabilize the divisor D. Many interesting determinantal 
arrangements, however, are not linear free divisors as our next example shows.



Download English Version:

https://daneshyari.com/en/article/4583618

Download Persian Version:

https://daneshyari.com/article/4583618

Daneshyari.com

https://daneshyari.com/en/article/4583618
https://daneshyari.com/article/4583618
https://daneshyari.com

