

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On weak commutativity in groups

ALGEBRA

Dessislava Kochloukova^{a,b,*}, Said Sidki^{a,b}

^a State University of Campinas (UNICAMP), Campinas, Brazil
^b University of Brasília (UnB), Brasília, Brazil

ARTICLE INFO

Article history: Received 2 March 2016 Available online 30 August 2016 Communicated by E.I. Khukhro

MSC: primary 20J05 secondary 20F05

Keywords: Group theory Finite presentability Weak commutativity Homological type FPn

ABSTRACT

For a group G we study homological and homotopical properties of the group $\chi(G) = \langle G, G^{\psi} | [g, g^{\psi}] = 1$ for $g \in G \rangle$. In particular, we show that the operator χ preserves the soluble of type FP_{∞} property.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In [30] Sidki associated to an arbitrary group G a new group $\chi(G)$ which is defined by two isomorphic copies of G and satisfies some natural commutator relations. It turned out that for G finite, the group $\chi(G)$ is always finite and for an arbitrary G, surprisingly $\chi(G)$ has a subquotient that is isomorphic to the Schur multiplier $H_2(G, \mathbb{Z})$. By definition

 $\chi(G) = \langle G, G^{\psi} \mid [g, g^{\psi}] = 1 \text{ for } g \in G \rangle,$

* Corresponding author.

E-mail addresses: desi@ime.unicamp.br (D. Kochloukova), s.n.sidki@mat.unb.br (S. Sidki).

 $[\]label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.08.020\\0021-8693/© 2016 Elsevier Inc. All rights reserved.$

where $\psi : G \to G^{\psi}$ is an isomorphism of groups. As shown in [30, Thm. C] if \mathcal{P} is one of the following classes of groups : finite π -groups, where π is a set of primes; finite nilpotent groups; solvable groups; perfect groups and $G \in \mathcal{P}$ then $\chi(G) \in \mathcal{P}$. Later on Gupta, Rocco and Sidki showed in [19] that if G is finitely generated nilpotent then $\chi(G)$ is nilpotent and found bounds on the nilpotency class of $\chi(G)$. Recently Lima and Oliveira proved that if G is polycyclic-by-finite then $\chi(G)$ is polycyclic-by-finite [22]. Our first result on $\chi(G)$ considers the case when G is soluble of homological type FP_{∞} . Recall that a group G is of type FP_m if there is a projective resolution of the trivial $\mathbb{Z}G$ -module \mathbb{Z} with finitely generated projectives in dimension $\leq m$ and G is of type FP_{∞} if it is of type FP_m for every m. Our first theorem shows that the operator χ preserves the soluble of type FP_{∞} property.

Theorem A. Let G be a soluble group of type FP_{∞} . Then $\chi(G)$ is a soluble group of type FP_{∞} .

As shown by Sidki in [30] the group $\chi(G)$ has two normal abelian subgroups R(G)and W(G) such that $\chi(G)/W(G)$ is isomorphic to a subgroup of $G \times G \times G$ that contains the commutator subgroup and $W(G)/R(G) \simeq H_2(G, \mathbb{Z})$. The crucial point of the proof of Lima and Oliveira in [22] is that if G is polycyclic-by-finite then W(G) is finitely generated. We generalize the main idea of this proof by introducing a more complicated homological argument that uses spectral sequences, see Theorem 6.1, which is a homological version of Martinez-Perez's result [23, Thm. C]. This enables us to prove the following theorem.

Theorem B. Let G be a group of type FP_2 such that G'/G'' is finitely generated. Then W(G) is finitely generated.

As a corollary we obtain

Corollary C. If G is finitely presented and G'/G'' is finitely generated then $\chi(G)$ is finitely presented.

Recall that a group G has homotopical type F_m if there is a K(G, 1) complex with finite *m*-skeleton. In particular a group is of type F_2 if and only if it is finitely presented. For $m \ge 2$ a group is of type F_m if and only if it is FP_m and finitely presented. Using the link between Σ -theory and results of Bieri and Renz [11,29] on homological/homotopical properties of subgroups containing the commutator subgroup, we establish the following result.

Theorem D. Let G be a group of type F_k (respectively type FP_k) and the commutator subgroup G' has type F_s (respectively type FP_s). Suppose that $k \leq 3s+2$. Then $\chi(G)/W(G)$ has type F_k (respectively type FP_k). Furthermore if G'/G'' is finitely generated and $k \geq 2$ we have that $\chi(G)$ has type F_k (respectively type FP_k). Download English Version:

https://daneshyari.com/en/article/4583622

Download Persian Version:

https://daneshyari.com/article/4583622

Daneshyari.com