

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Primitive permutation groups as products of point stabilizers

ALGEBRA

Martino Garonzi^{a,1}, Dan Levy^{b,*}, Attila Maróti^{c,2}, Iulian I. Simion^{d,3}

 ^a Departamento de Matematica, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
^b The School of Computer Sciences, The Academic College of Tel-Aviv-Yaffo, 2 Rabenu Yeruham St., Tel-Aviv 61083, Israel
^c MTA Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, H-1053, Budapest, Hungary

^d Department of Mathematics, University of Padova, Via Trieste 63, 35121 Padova, Italy

A R T I C L E I N F O

Article history: Received 22 August 2015 Available online 4 October 2016 Communicated by Martin Liebeck

MSC: 20B15 20D40

Keywords: Primitive groups Products of conjugate subgroups

АВЅТ КАСТ

We prove that there exists a universal constant c such that any finite primitive permutation group of degree n with a non-trivial point stabilizer is a product of no more than $c \log n$ point stabilizers.

@ 2016 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: mgaronzi@gmail.com (M. Garonzi), danlevy@mta.ac.il (D. Levy), maroti.attila@renyi.mta.hu (A. Maróti), iulian.simion@math.unipd.it (I.I. Simion).

 $^{-1}\,$ MG was supported by the University of Brasília (UnB) and by FEMAT-Fundação de Estudos em Ciências Matemáticas Proc. 037/2016.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.09.025} 0021\mbox{-}8693/\mbox{©} 2016 Elsevier Inc. All rights reserved.$

 $^{^2\,}$ AM was supported by the MTA Rényi Lendület Groups and Graphs Research Group and by OTKA grants K84233 and K115799.

³ IS acknowledges the support of the University of Padova (grants CPDR131579/13 and CPDA125818/12).

1. Introduction

Given a finite group G^4 and a subgroup H of G whose normal closure is G, one can show, by a straightforward elementary argument, that G is the setwise product of at least $\frac{\log|G|}{\log|H|}$ conjugates of H. A far reaching conjecture of Liebeck, Nikolov and Shalev states [8] that in the case that G is a non-abelian simple group, $\frac{\log|G|}{\log|H|}$ is in fact the right order of magnitude for the minimal number of conjugates of H whose product is G, namely, there exists a universal constant c such that for any non-abelian simple group G and any non-trivial $H \leq G$, the group G is the product of no more than $c \frac{\log|G|}{\log|H|}$ conjugates of H. Later on, in [9], this conjecture was extended to allow H to be any subset of G of size at least 2. Some weaker versions of these conjectures are proved in [8, Theorem 2], [9, Theorem 3], and [5, Theorem 1.3].

Here we look for a universal upper bound on the minimal length of a product covering of a finite primitive permutation group by conjugates of a point stabilizer. We will prove the following logarithmic⁵ bound:

Theorem 1. There exists a universal constant c such that if G is any primitive permutation group of degree n with a non-trivial point stabilizer H then G is a product of at most $c \log n$ conjugates of H.

We note, that in most relevant cases, $\frac{\log|G|}{\log|H|} < \log|G:H| = \log n$ (see Lemma 2.1), so it may well be that the bound provided by Theorem 1 is not the best possible. However, at present it seems hard to resolve this even for one particular O'Nan–Scott family of primitive groups. We believe that these questions deserve further investigation.

2. Preliminaries

We collect some preparatory results and notation.

Lemma 2.1. Let G be a group and $H \leq G$ such that $|H| \geq 4$ and $|G:H| \geq 4$. Then $\log |G| / \log |H| \leq \log |G:H|$.

Proof. Set $x := \log |G|$ and $y := \log |H|$. Then the desired inequality reads $x/y \le x - y$, which is equivalent to $x \ge y + 1 + \frac{1}{y-1}$. Since $y \ge 2$ because $|H| \ge 4$, this is clearly satisfied if $x \ge y + 2$, which is equivalent to $|G:H| \ge 4$. \Box

Lemma 2.2. Let G be an almost simple group with socle T. Let M be a maximal subgroup of G and let $M_0 := T \cap M$. Then $|M_0| \ge 6$.

⁴ All groups discussed are assumed to be finite.

⁵ Throughout the paper, log stands for logarithm in base 2.

Download English Version:

https://daneshyari.com/en/article/4583624

Download Persian Version:

https://daneshyari.com/article/4583624

Daneshyari.com