Primitive permutation groups as products of point stabilizers

Martino Garonzi ${ }^{\text {a,1 }}$, Dan Levy ${ }^{\text {b,* }}$, Attila Maróti ${ }^{\mathrm{c}, 2}$, Iulian I. Simion ${ }^{\text {d, }}{ }^{\text {a }}$
${ }^{\text {a }}$ Departamento de Matematica, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
b The School of Computer Sciences, The Academic College of Tel-Aviv-Yaffo,
2 Rabenu Yeruham St., Tel-Aviv 61083, Israel
c MTA Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, H-1053, Budapest, Hungary
d Department of Mathematics, University of Padova, Via Trieste 63, 35121
Padova, Italy

A R T I C L E I N F O

Article history:

Received 22 August 2015
Available online 4 October 2016 Communicated by Martin Liebeck

$M S C$:

20B15
20D40

Keywords:
Primitive groups
Products of conjugate subgroups

A B S T R A C T

We prove that there exists a universal constant c such that any finite primitive permutation group of degree n with a non-trivial point stabilizer is a product of no more than $c \log n$ point stabilizers.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Given a finite group G^{4} and a subgroup H of G whose normal closure is G, one can show, by a straightforward elementary argument, that G is the setwise product of at least $\frac{\log |G|}{\log |H|}$ conjugates of H. A far reaching conjecture of Liebeck, Nikolov and Shalev states [8] that in the case that G is a non-abelian simple group, $\frac{\log |G|}{\log |H|}$ is in fact the right order of magnitude for the minimal number of conjugates of H whose product is G, namely, there exists a universal constant c such that for any non-abelian simple group G and any non-trivial $H \leq G$, the group G is the product of no more than $c \frac{\log |G|}{\log |H|}$ conjugates of H. Later on, in [9], this conjecture was extended to allow H to be any subset of G of size at least 2. Some weaker versions of these conjectures are proved in [8, Theorem 2], [9, Theorem 3], and [5, Theorem 1.3].

Here we look for a universal upper bound on the minimal length of a product covering of a finite primitive permutation group by conjugates of a point stabilizer. We will prove the following logarithmic ${ }^{5}$ bound:

Theorem 1. There exists a universal constant c such that if G is any primitive permutation group of degree n with a non-trivial point stabilizer H then G is a product of at most $c \log n$ conjugates of H.

We note, that in most relevant cases, $\frac{\log |G|}{\log |H|}<\log |G: H|=\log n$ (see Lemma 2.1), so it may well be that the bound provided by Theorem 1 is not the best possible. However, at present it seems hard to resolve this even for one particular O'Nan-Scott family of primitive groups. We believe that these questions deserve further investigation.

2. Preliminaries

We collect some preparatory results and notation.

Lemma 2.1. Let G be a group and $H \leq G$ such that $|H| \geq 4$ and $|G: H| \geq 4$. Then $\log |G| / \log |H| \leq \log |G: H|$.

Proof. Set $x:=\log |G|$ and $y:=\log |H|$. Then the desired inequality reads $x / y \leq x-y$, which is equivalent to $x \geq y+1+\frac{1}{y-1}$. Since $y \geq 2$ because $|H| \geq 4$, this is clearly satisfied if $x \geq y+2$, which is equivalent to $|G: H| \geq 4$.

Lemma 2.2. Let G be an almost simple group with socle T. Let M be a maximal subgroup of G and let $M_{0}:=T \cap M$. Then $\left|M_{0}\right| \geq 6$.

[^1]
https://daneshyari.com/en/article/4583624

Download Persian Version:
https://daneshyari.com/article/4583624

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: mgaronzi@gmail.com (M. Garonzi), danlevy@mta.ac.il (D. Levy), maroti.attila@renyi.mta.hu (A. Maróti), iulian.simion@math.unipd.it (I.I. Simion).

 1 MG was supported by the University of Brasília (UnB) and by FEMAT-Fundação de Estudos em Ciências Matemáticas Proc. 037/2016.
 ${ }^{2}$ AM was supported by the MTA Rényi Lendület Groups and Graphs Research Group and by OTKA grants K84233 and K115799.
 ${ }^{3}$ IS acknowledges the support of the University of Padova (grants CPDR131579/13 and CPDA125818/12).

[^1]: ${ }^{4}$ All groups discussed are assumed to be finite.
 ${ }^{5}$ Throughout the paper, log stands for logarithm in base 2 .

