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1. Introduction

Given a finite group G4 and a subgroup H of G whose normal closure is G, one can 
show, by a straightforward elementary argument, that G is the setwise product of at least 
log|G|
log|H| conjugates of H. A far reaching conjecture of Liebeck, Nikolov and Shalev states 
[8] that in the case that G is a non-abelian simple group, log|G|

log|H| is in fact the right order 
of magnitude for the minimal number of conjugates of H whose product is G, namely, 
there exists a universal constant c such that for any non-abelian simple group G and 
any non-trivial H ≤ G, the group G is the product of no more than c log|G|

log|H| conjugates 
of H. Later on, in [9], this conjecture was extended to allow H to be any subset of G of 
size at least 2. Some weaker versions of these conjectures are proved in [8, Theorem 2], 
[9, Theorem 3], and [5, Theorem 1.3].

Here we look for a universal upper bound on the minimal length of a product covering 
of a finite primitive permutation group by conjugates of a point stabilizer. We will prove 
the following logarithmic5 bound:

Theorem 1. There exists a universal constant c such that if G is any primitive permu-
tation group of degree n with a non-trivial point stabilizer H then G is a product of at 
most c log n conjugates of H.

We note, that in most relevant cases, log|G|
log|H| < log |G : H| = logn (see Lemma 2.1), so 

it may well be that the bound provided by Theorem 1 is not the best possible. However, 
at present it seems hard to resolve this even for one particular O’Nan–Scott family of 
primitive groups. We believe that these questions deserve further investigation.

2. Preliminaries

We collect some preparatory results and notation.

Lemma 2.1. Let G be a group and H ≤ G such that |H| ≥ 4 and |G : H| ≥ 4. Then 
log |G| / log |H| ≤ log |G : H|.

Proof. Set x := log |G| and y := log |H|. Then the desired inequality reads x/y ≤ x − y, 
which is equivalent to x ≥ y + 1 + 1

y−1 . Since y ≥ 2 because |H| ≥ 4, this is clearly 
satisfied if x ≥ y + 2, which is equivalent to |G : H| ≥ 4. �
Lemma 2.2. Let G be an almost simple group with socle T . Let M be a maximal subgroup 
of G and let M0 := T ∩M . Then |M0| ≥ 6.

4 All groups discussed are assumed to be finite.
5 Throughout the paper, log stands for logarithm in base 2.
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