

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

A note on perfect isometries between finite general linear and unitary groups at unitary primes

ALGEBRA

Michael Livesey

ARTICLE INFO

Article history: Received 1 February 2016 Available online 30 August 2016 Communicated by Michel Broué

Keywords: Representation theory Character theory Perfect isometries Finite general linear groups Finite unitary groups Unipotent blocks

ABSTRACT

Let q be a power of a prime, ℓ a prime not dividing q, d a positive integer coprime to both ℓ and the multiplicative order of $q \mod \ell$ and n a positive integer. A. Watanabe proved that there is a perfect isometry between the principal ℓ -blocks of $\operatorname{GL}_n(q)$ and $\operatorname{GL}_n(q^d)$ where the correspondence of characters is given by Shintani descent. In the same paper Watanabe also proved that if ℓ and q are odd and ℓ does not divide $|\operatorname{GL}_n(q^2)|/|\operatorname{U}_n(q)|$ then there is a perfect isometry between the principal ℓ -blocks of $U_n(q)$ and $GL_n(q^2)$ with the correspondence of characters also given by Shintani descent. R. Kessar extended this first result to all unipotent blocks of $\operatorname{GL}_n(q)$ and $\operatorname{GL}_n(q^d)$. In this paper we extend this second result to all unipotent blocks of $U_n(q)$ and $GL_n(q^2)$. In particular this proves that any two unipotent blocks of $U_n(q)$ at unitary primes (for possibly different n) with the same weight are perfectly isometric. We also prove that this perfect isometry commutes with Deligne-Lusztig induction at the level of characters.

@ 2016 Published by Elsevier Inc.

E-mail address: michael.livesey@manchester.ac.uk.

1. Preliminaries

1.1. Perfect isometries

Let ℓ be an odd prime and consider an ℓ -modular system (K, \mathcal{O}, k) , such that K contains enough roots of unity for the groups being considered in this paper. Let G and H be finite groups and b and c block idempotents of $\mathcal{O}G$ and $\mathcal{O}H$ respectively. We denote by $\operatorname{Irr}(G, b)$ the set of irreducible characters of $\mathcal{O}Gb$. A perfect isometry (see [2]) between $\mathcal{O}Gb$ and $\mathcal{O}Hc$ is an isometry

$$I : \mathbb{Z}\operatorname{Irr}(G, b) \xrightarrow{\sim} \mathbb{Z}\operatorname{Irr}(H, c),$$

with $I(\mathbb{Z}\operatorname{Irr}(G, b)) = \mathbb{Z}\operatorname{Irr}(H, c),$

where

$$\begin{split} \hat{I}: G \times H &\to \mathcal{O} \\ (x,y) &\mapsto \sum_{\chi \in \mathrm{Irr}(G,b)} \chi(x) I(\chi)(y) \end{split}$$

has the property that $\hat{I}(x, y)$ is divisible by $|C_G(x)|$ and $|C_G(y)|$ in \mathcal{O} for all $x \in G$ and $y \in H$ and that $\hat{I}(x, y) = 0$ if in addition exactly one of x and y is ℓ -singular.

1.2. Shintani descent

Let n be a positive integer and q a power of an odd prime p. We denote by F the Frobenius endomorphism of $\mathbf{G} := \mathrm{GL}_n(\overline{\mathbb{F}_q})$ defined by

$$F: \mathbf{G} \to \mathbf{G}$$

 $A \mapsto JA^{-t[q]}J,$

where $A^{[q]}$ is the matrix obtained from A by raising every entry to the power q, A^{-t} is the inverse transpose of A and J is the $n \times n$ matrix with 1's on the anti-diagonal and 0's everywhere else. We define

$$\mathbf{G}^{F} =: \mathbf{U}_{n}(q)$$

 $\mathbf{G}^{F^{2}} =: \mathbf{GL}_{n}(q^{2}).$

We denote by σ the restriction of F to \mathbf{G}^{F^2} . Two elements $g, h \in \mathbf{G}^{F^2}$ are said to be σ -conjugate if $xg\sigma(x)^{-1} = h$ for some $x \in \mathbf{G}^{F^2}$. For $g \in \mathbf{G}$, we have $g^{-1}F(g) \in \mathbf{G}^{F^2}$ iff $F^2(g)g^{-1} \in \mathbf{G}^F$. Now by Lang's theorem, any element x of \mathbf{G}^F can be written as $x = g^{-1}F(g)$ for some $g \in \mathbf{G}$. The map $g^{-1}F(g) \to F^2(g)g^{-1}$ gives a bijection, that

Download English Version:

https://daneshyari.com/en/article/4583637

Download Persian Version:

https://daneshyari.com/article/4583637

Daneshyari.com