The bi-graded structure of symmetric algebras with applications to Rees rings ${ }^{\text {th }}$

Andrew Kustin ${ }^{\text {a,* }}$, Claudia Polini ${ }^{\text {b }}$, Bernd Ulrich ${ }^{\text {c }}$
a Department of Mathematics, University of South Carolina, Columbia, SC 29208, United States
${ }^{\mathrm{b}}$ Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States
c Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States

A R T I C L E I N F O

Article history:

Received 11 November 2014
Available online 30 August 2016
Communicated by Steven Dale
Cutkosky

MSC:

primary 13A30, 14H50
secondary $14 \mathrm{H} 20,13 \mathrm{D} 02,14 \mathrm{E} 05$

Keywords:
Bi-graded structures
Duality
Elimination theory
Generalized zero of a matrix
Generator degrees
Hilbert-Burch matrix
Infinitely near singularities
Koszul complex
Local cohomology
Linkage
Matrices of linear forms

A B S T R A C T

Consider a rational projective plane curve \mathcal{C} parameterized by three homogeneous forms of the same degree in the polynomial ring $R=k[x, y]$ over a field k. The ideal I generated by these forms is presented by a homogeneous 3×2 matrix φ with column degrees $d_{1} \leq d_{2}$. The Rees algebra $\mathcal{R}=R[I t]$ of I is the bi-homogeneous coordinate ring of the graph of the parameterization of \mathcal{C}; and accordingly, there is a dictionary that translates between the singularities of \mathcal{C} and algebraic properties of the ring \mathcal{R} and its defining ideal. Finding the defining equations of Rees rings is a classical problem in elimination theory that amounts to determining the kernel \mathcal{A} of the natural map from the symmetric algebra $\operatorname{Sym}(I)$ onto \mathcal{R}. The ideal $\mathcal{A}_{\geq d_{2}-1}$, which is an approximation of \mathcal{A}, can be obtained using linkage. We exploit the bi-graded structure of $\operatorname{Sym}(I)$ in order to describe the structure of an improved approximation $\mathcal{A}_{\geq d_{1}-1}$ when $d_{1}<d_{2}$ and φ has a generalized zero in its first column. (The latter condition is equivalent to assuming that \mathcal{C} has a singularity of multiplicity d_{2}.) In particular, we give the bi-degrees of a minimal bi-homogeneous generating set for

[^0]Morley forms
Parametrization
Rational plane curve
Rational plane sextic
Rees algebra
Sylvester form
Symmetric algebra
this ideal. When $2=d_{1}<d_{2}$ and φ has a generalized zero in its first column, then we record explicit generators for \mathcal{A}. When $d_{1}=d_{2}$, we provide a translation between the bi-degrees of a bi-homogeneous minimal generating set for $\mathcal{A}_{d_{1}-2}$ and the number of singularities of multiplicity d_{1} that are on or infinitely near \mathcal{C}. We conclude with a table that translates between the bi-degrees of a bi-homogeneous minimal generating set for \mathcal{A} and the configuration of singularities of \mathcal{C} when the curve \mathcal{C} has degree six.
© 2016 Elsevier Inc. All rights reserved.

Contents

1. Introduction 189
2. Duality, perfect pairing, and consequences 193
2.1. The abstract duality relating \mathcal{A} and $\operatorname{Sym}(I)$ 194
2.2. The torsionfreeness and reflexivity of the S-module $\operatorname{Sym}(I)_{i}$ and how these properties are related to the geometry of the corresponding curve 198
2.3. The duality is given by multiplication 202
2.4. Explicit S-module generators for \mathcal{A}_{i}, when i is large 204
3. The case of a generalized zero in the first column of φ 206
4. Morley forms 217
5. Explicit generators for \mathcal{A} when $d_{1}=2$ 228
6. The case of $d_{1}=d_{2}$ 242
7. An application: sextic curves 246
Acknowledgments 249
References 249

1. Introduction

Our basic setting is as follows: Let k be an algebraically closed field, $R=k[x, y]$ a polynomial ring in two variables, and I an ideal of R minimally generated by homogeneous forms h_{1}, h_{2}, h_{3} of the same degree $d>0$. Extracting a common divisor we may harmlessly assume that I has height two. We will keep these assumptions throughout the introduction, though many of our results are stated and proved in greater generality.

On the one hand, the homogeneous forms h_{1}, h_{2}, h_{3} define a morphism

$$
\begin{equation*}
\eta: \mathbb{P}_{k}^{1} \xrightarrow{\left[h_{1}: h_{2}: h_{3}\right]} \mathbb{P}_{k}^{2} \tag{1.0.1}
\end{equation*}
$$

whose image is a curve \mathcal{C}. After reparameterizing we may assume that the map η is birational onto its image or, equivalently, that the curve \mathcal{C} has degree d.

On the other hand, associated to h_{1}, h_{2}, h_{3} is a syzygy matrix φ that gives rise to a homogeneous free resolution of the ideal I,

$$
0 \longrightarrow R\left(-d-d_{1}\right) \oplus R\left(-d-d_{2}\right) \xrightarrow{\varphi} R(-d)^{3} \longrightarrow I \longrightarrow 0 .
$$

https://daneshyari.com/en/article/4583639

Download Persian Version:
https://daneshyari.com/article/4583639

Daneshyari.com

[^0]: The first author was partially supported by NSA grant H98230-10-1-0361 and Simons Foundation grant 233597. The second author was partially supported by NSF grant 1503605 and the NSA. The last author was partially supported by NSF grant 1503605 and as a Simons Fellow.

 * Corresponding author.

 E-mail addresses: kustin@math.sc.edu (A. Kustin), cpolini@nd.edu (C. Polini), ulrich@math.purdue.edu (B. Ulrich).

