

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Principal minor ideals and rank restrictions on their vanishing sets

ALGEBRA

Ashley K. Wheeler

Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, United States

ARTICLE INFO

Article history: Received 19 March 2015 Available online 24 August 2016 Communicated by Bernd Ulrich

Keywords: Principal minor ideals Determinantal ideals Matroid varieties Positroid varieties Grassmannians

ABSTRACT

All matrices we consider have entries in a fixed algebraically closed field K. A minor of a square matrix is *principal* means it is defined by the same row and column indices. We study the ideal generated by size t principal minors of a generic matrix, and restrict our attention to locally closed subsets of its vanishing set, given by matrices of a fixed rank. The main result is a computation of the dimension of the locally closed set of $n \times n$ rank n - 2 matrices whose size n - 2 principal minors vanish; this set has dimension $n^2 - n - 4$.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

Given a generic $n \times n$ matrix X, and K[X] the polynomial ring in entries x_{ij} of X over some algebraically closed field K, we study the ideals $\mathfrak{B}_t = \mathfrak{B}_t(X)$, generated by the size t principal minors of X. Historically, various ideals defined using generic matrices have been of great interest to algebraistis – such examples include the determinantal ideals (see [4–6,9,19,23]), due to their connection to invariant theory (as in [2]) and the Pfaffian ideals (see [3,10–12,18]), whose study is often inspired by the result from [1],

E-mail address: ashleykw@uark.edu.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.08.013} 0021-8693 @ 2016 Elsevier Inc. All rights reserved.$

as well as their connection to invariant theory. In developing their generalized version of the Principal Minor Theorem, Kodiyalam, Lam, and Swan [14] reveal a contrast between the principal minor ideals and the Pfaffian ideals: while the Pfaffian ideals, like the determinantal ideals, satisfy a chain condition according to rank, the principal minor ideals do not. Furthermore, in [24] it is shown that, unlike determinantal ideals and Pfaffian ideals, principal minor ideals are not, in general, Cohen–Macaulay.

Principal minors arise in many other contexts – see, for example, [8,15,16,21,22]. The most direct study of principal minors is in [24]. There, it is shown the algebraic set $\mathcal{V}(\mathfrak{B}_{n-1})$ has two components: one given by the determinantal ideal I_{n-1} and the other given by a height *n* ideal, \mathfrak{Q}_{n-1} , that is the contraction to K[X] of the kernel of the map

$$K[X] \left[\frac{1}{\det X} \right] \to K[X] \left[\frac{1}{\det X} \right] / \mathfrak{B}_1$$
$$X \to X^{-1}.$$

When n = 4, \mathfrak{B}_{n-1} is reduced and as a consequence, I_{n-1} and \mathfrak{Q}_{n-1} are linked in that case. Identifying the components for $\mathcal{V}(\mathfrak{B}_{n-1})$ relies on another result within that paper, that if $\mathcal{Y}_{n,r,t}$ denotes the locally closed set of $\mathcal{V}(\mathfrak{B}_t)$ consisting of rank r matrices, then for all n, t,

$$\mathcal{Y}_{n,n,t} \cong \mathcal{Y}_{n,n,n-t}$$

as schemes.

This paper is organized as follows: Section 2 gives the necessary preliminaries for the remainder of the paper. We focus on the components of $\mathcal{V}(\mathfrak{B}_t)$ by restricting to the locally closed subsets $\mathcal{Y}_{n,r,t}$, consisting of matrices of rank exactly r. Our main result, given in Section 3, is a computation of the dimension of $\mathcal{Y}_{n,n-2,n-2}$.

Theorem (3, Section 3.3). The locally closed set of $n \times n$ rank n-2 matrices in Spec K[X], whose size n-2 principal minors vanish, has dimension $n^2 - 4 - n$.

In studying the components of $\mathcal{Y}_{n,n-2,n-2}$ we define a bundle map Θ (see Equation (1), Section 2) that reduces the problem to studying pairs of subsets in $\operatorname{Grass}(n-2,n)$. The technique in proving Theorem 3 is as follows: Given a point in the Grassmannian, we encode exactly which of its Plücker coordinates do and do not vanish in a simple graph. Such graphs are called *permissible* (see Section 3.2). We then define the notion of a permissible subvariety of the Grassmannian, along with its corresponding graph. We prove and then use the properties of permissible graphs to compute the dimension of $\mathcal{Y}_{n,n-2,n-2}$.

In Section 3.4 we suggest a natural extension of the techniques from Section 3.2 to the locally closed sets $\mathcal{Y}_{n,n-3,n-3}$. More generally, the structure of $\mathcal{Y}_{n,t,t}$ turns out to be of great interest in its own right, in fact leading to questions that are NP-hard (see [7] Download English Version:

https://daneshyari.com/en/article/4583641

Download Persian Version:

https://daneshyari.com/article/4583641

Daneshyari.com