

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On centrally generically tame algebras over perfect fields

ALGEBRA

R. Bautista^a, E. Pérez^b, L. Salmerón^{a,*}

 ^a Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
^b Facultad de Matemáticas, Universidad Autónoma de Yucatán, Mérida, Mexico

ARTICLE INFO

Article history: Received 24 February 2015 Available online 1 July 2016 Communicated by Changchang Xi

MSC: 16G60 16G70 16G20

Keywords: Differential tensor algebras Ditalgebras Central endolength Generic modules Central finiteness Algebraic boundedness Tame and wild algebras

ABSTRACT

We show that the central generic tameness of a finitedimensional algebra Λ over a (possibly finite) perfect field, is equivalent to its non-almost sharp wildness. In this case: we give, for each natural number d, parametrizations of the indecomposable Λ -modules with central endolength d, modulo finite scalar extensions, over rational algebras. Moreover, we show that the central generic tameness of Λ is equivalent to its semigeneric tameness, and that in this case, algebraic boundedness coincides with central finiteness for generic Λ -modules.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Denote by k a fixed ground field and let Λ be a finite-dimensional k-algebra. Given a Λ -module G, recall that by definition the *endolength* G is its length as a right

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.06.016} 0021\mbox{-}8693/\mbox{©}\ 2016\ Elsevier\ Inc.\ All\ rights\ reserved.$

E-mail addresses: raymundo@matmor.unam.mx (R. Bautista), jperezt@correo.uady.mx (E. Pérez), salmeron@matmor.unam.mx (L. Salmerón).

End_{Λ}(G)^{op}-module. The module G is called *generic* if it is indecomposable, of infinite length as a Λ -module, but with finite endolength. The algebra Λ is called *generically tame* if, for each $d \in \mathbb{N}$, there is only a finite number of isoclasses of generic Λ -modules with endolength d. This notion was introduced and examined by W.W. Crawley-Boevey in [8] and [9]. In this paper we continue our exploration of the notion of generic tameness for finite-dimensional algebras Λ over perfect fields (see [2–4]). Our main results, stated below, apply to generically tame finite-dimensional algebras Λ over a perfect (possibly finite) field k. In order to state precisely and comment these results we need to recall and introduce some terminology in the following definitions.

Definition 1.1. For any k-algebra B and $M \in B$ - Mod, denote by $E_M := \operatorname{End}_B(M)^{op}$ its endomorphism algebra. Then, M admits a structure of B- E_M -bimodule. By definition, the *endolength* of M, denoted by endol(M), is the length of M as a right E_M -module.

A module $M \in B$ -Mod is called *pregeneric* iff M is indecomposable, with finite endolength but with infinite dimension over the ground field k. The algebra B is called *pregenerically tame* iff, for each natural number d, there are only finitely many isoclasses of pregeneric B-modules with endolength d.

Definition 1.2. With the preceding notation, given $M \in B$ -Mod, write $D_M = E_M/\operatorname{rad} E_M$ and denote by Z_M the center of D_M . We shall say that the *B*-module M is centrally finite iff D_M is a division ring and $[D_M : Z_M]$ is finite. In this case, $[D_M : Z_M] = c_M^2$, for some positive integer c_M . If M is centrally finite, the central endolength of M is the number c-endol $(M) = c_M \times \operatorname{endol}(M)$.

The algebra B is called *centrally pregenerically tame*, if for each $d \in \mathbb{N}$ there is only a finite number of isoclasses of centrally finite pregeneric B-modules with central endolength d.

Definition 1.3. Again with the preceding notation, a pregeneric *B*-module *G* is called algebraically rigid if, for any algebraic field extension \mathbb{L} of *k*, the $B^{\mathbb{L}}$ -module $G^{\mathbb{L}}$ is pregeneric.

We say that a pregeneric *B*-module *G* is algebraically bounded iff there exists a finite field extension \mathbb{F} of *k* and a finite sequence of algebraically rigid pregeneric $B^{\mathbb{F}}$ -modules G_1, \ldots, G_n such that $G^{\mathbb{F}} \cong G_1 \oplus \cdots \oplus G_n$.

An algebra B is called *semipregenerically tame* if for each $d \in \mathbb{N}$ there is only a finite number of isoclasses of algebraically bounded and centrally finite pregeneric B-modules with central endolength d.

If B is a finite-dimensional algebra, the notion of pregeneric B-module coincides with the usual notion of generic B-module. Hence, in this case we will eliminate the term "pre" which appears in the preceding denominations.

In [4] we obtained for a finite-dimensional semigenerically tame algebra Λ over a perfect field, parametrizations of the centrally finite algebraically bounded Λ -modules

Download English Version:

https://daneshyari.com/en/article/4583676

Download Persian Version:

https://daneshyari.com/article/4583676

Daneshyari.com