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1. Introduction

This paper grew out of an attempt to understand more fully part of a theorem due to Roggenkamp
and Scott (see [11, Theorem 6], [17,18], [12, Theorem 19]) about conjugacy of certain finite p-sub-
groups in the group of units of a p-adic group ring. The theorem in question, by now called the
F*-Theorem, is stated below together with references where a detailed account on its proof can be
found (with the result for p =2 from Section 2 of the present paper being relevant?).

Some of the interesting aspects of the group of units of a group ring SG of a finite group G
concern its finite subgroups, in particular when the coefficient ring S is a G-adapted ring, i.e., an
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integral domain of characteristic zero in which no prime divisor of the order of G is invertible. Below,
a few well known results in this case are listed. Note that it suffices to consider only the group of
units V(SG) consisting of units of augmentation one. For u € V(SG), we say that u is a trivial unit if
u € G, and the trace of u is its 1-coefficient (with respect to the basis G). Let S be a G-adapted ring.
Then (see [16,8] or [19]):

(a) a non-trivial unit of SG of finite order has trace zero;
(b) the order of a finite subgroup of V(SG) divides the order of G;
(c) a central unit of finite order is a trivial unit.

Limiting attention only to finite p-subgroups in the group of units, one might ask whether com-
parable results hold with S replaced by the ring Z, of p-adic integers. However, (a) and (b) do not
carry over, even not if Z,G consists of a single block only (cf. [15, Section XIV]). Imposing additional
conditions one might also ask how certain finite p-subgroups are embedded in V(Z,G). If, for exam-
ple, attention is directed to the principal block B of Z,G, a Sylow p-subgroup P of G is identified
with its projection on B, and « is an augmented automorphism of B, then the question whether P is
conjugate by a unit of B to its image P, is part of Scott’s “defect group (conjugacy) question” (see
[17, p. 267], [18]). For p-groups G, this question was answered in the affirmative by Roggenkamp and
Scott [14].

Here, the following two theorems are proved. In both we assume that G has a normal p-subgroup
N satisfying Cc(N) < N. By definition, this means that G is p-constrained and Oy (G) =1 (see [6,
V11, 13.3]).

Let R be a p-adic ring, that is, the integral closure of the p-adic integers Z, in a finite exten-
sion field of the p-adic field Q,. (Then R is a complete discrete valuation ring.) Note that by our
assumption on G, the group ring RG will consist of a single (principal) block only (see [6, VII, 13.5]).

Theorem A. Suppose that G has a normal p-subgroup N that contains its centralizer C¢ (N). Then any finite
p-group in V(RG) which normalizes N is conjugate to a subgroup of G by a unit of RG.

Theorem B. Suppose that G has a normal p-subgroup N that contains its centralizer Cc (N). Then any finite
p-group in V(RG) which centralizes N is contained in N.

Theorem B is both a corollary of Theorem A and used in its proof. To deduce it immediately from
Theorem A, let C be a finite p-group in V(RG) which centralizes N. Then by Theorem A, (N,C)¥ < G
for some unit u of RG. Consequently, it follows that N¥ = N since N* maps to 1 under the natural
map RG — RG/N. So [N, C¥]=[N",C"]=1 and C* < N = N by assumption on N, that is, C <N.

The proofs are somewhat complicated by the fact that we do not know in advance that RG is
free for the “multiplication action” of the finite p-group under consideration (taking this for granted,
Theorem A should be part of the F*-Theorem). Section 2 contains some preparatory results needed for
the handling of the case p = 2. Theorems A and B are proved in Section 3. The bimodule arguments
used there are inspired by [11, p. 231]. The proof depends heavily on the strong results of Weiss on
p-permutation lattices (see [21,22,13]). The following theorem will be used.

Theorem (Weiss). Let M be an R-representation of a finite p-group H. Suppose that N is a normal subgroup
of H so that

(a) the restriction My of M to N is a free RN-module;
(b) the fixed point module M" is a permutation lattice for G /N over R.

Then M is a permutation lattice for G over R.

That this theorem can be applied rests upon the “Ward-Coleman Lemma.” Coleman’s contribu-
tion [1] is well known, but the first version of the lemma appears in an article of Ward [20] as
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