

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Finite p-groups with some isolated subgroups

Zvonimir Janko

Mathematical Institute, University of Heidelberg, 69120 Heidelberg, Germany

ARTICLE INFO

Article history: Received 10 October 2015 Available online 22 July 2016 Communicated by E.I. Khukhro

MSC: 20D15

Keywords:
Finite p-groups
Isolated subgroups
Minimal nonabelian subgroups
Maximal abelian subgroups
Hamiltonian groups
Quasidihedral 2-groups
Hughes subgroup

ABSTRACT

We say that a subgroup H is isolated in a group G if for each $x \in G$ we have either $x \in H$ or $\langle x \rangle \cap H = \{1\}$. Here we shall determine certain classes of finite nonabelian p-groups which possess some isolated subgroups (Theorems 1, 2, 4, 6 and 8 to 16).

© 2016 Elsevier Inc. All rights reserved.

Let G be a finite p-group. We say (according to Y. Berkovich) that a subgroup H of G is isolated in G if for each $x \in G$ we have either $x \in H$ or $\langle x \rangle \cap H = \{1\}$. We shall determine certain classes of finite nonabelian p-groups which possess some isolated subgroups (Theorems 1, 2, 4, 6 and 8 to 16). Most of these classes have been predicted in Problems of Y. Berkovich stated in [3] (problem numbers: 3312, 3358, 3359, 3360, 3365). However, the concept of isolated subgroups appears much earlier (see for instance [5]).

All groups considered here will be finite p-groups and our notation is standard (see [1]). In particular, E_{p^k} will denote an elementary abelian group of order p^k , $S(p^3)$ (p > 2),

is a nonabelian group of order p^3 and exponent p, D_{2^n} , $n \geq 3$, is a dihedral group of order 2^n ,

$$M_{p^n} = \langle a, b \mid a^{p^{n-1}} = b^p = 1, [a, b] = a^{p^{n-2}} \rangle,$$

where $n \geq 3$, and in case p = 2, $n \geq 4$. Further, a quasidihedral group is a 2-group G with an abelian subgroup H of exponent > 2 and index 2 and there is an involution $i \in G - H$ which inverts each element in H. Finally, the Hughes subgroup $H_p(G)$ of a p-group G is the subgroup of G generated by all elements of order $\neq p$.

Theorem 1. Let G be a nonabelian p-group of exponent > p all of whose maximal abelian subgroups of exponent > p are isolated in G. Then G has an abelian maximal subgroup A of exponent > p such that $A = H_p(G)$ (Hughes subgroup).

Proof. Let G be a nonabelian p-group of exponent > p all of whose maximal abelian subgroups of exponent > p are isolated in G. Then this condition is hereditary to all nonabelian subgroups of exponent > p. Let A be a maximal abelian subgroup of exponent > p and let $A < B \le G$ with |B:A| = p. Then all elements in B - A are of order p and so $A = H_p(B)$ and A is characteristic in B.

Suppose that B < G and let $B < C \le G$ with |C:B| = p so that $A \le C$ and $|C/A| = p^2$. If $C/A \cong C_{p^2}$, then all elements in C-B are of order p^2 so that $\Omega_1(C) = B$. In that case consider an element $c \in C-B$ of order p^2 so that $B = A\langle c^p \rangle$ and $C = A\langle c \rangle$. Let X < C be a maximal abelian subgroup in C containing $\langle c \rangle$ so that AX = C and X is isolated in C. Let $X < Y \le C$ with |Y:X| = p so that all elements in Y - X are of order p. But then C is generated by elements of order p in $(B-A) \cup (Y-X)$, contrary to $\Omega_1(C) = B$. It follows that we must have $C/A \cong E_{p^2}$. In that case all elements in C-A are of order p and so $H_p(C) = A$. Also note that $C' \le A$ and so C is metabelian. But this contradicts a result of Hogan–Kappe [4] stating that in a metabelian p-group the index of a nontrivial Hughes subgroup is at most p. It follows that we must have B = G and so our theorem is proved. \square

Theorem 2. Let G be a nonabelian p-group of exponent > p all of whose maximal abelian subgroups are isolated in their normalizers. Then p > 2 and G has an abelian maximal subgroup A of exponent > p such that $A = H_p(G)$.

Conversely, all such p-groups satisfy the assumption of this theorem.

Proof. Let G be a nonabelian p-group of exponent > p all of whose maximal abelian subgroups are isolated in their normalizers. Let A be a maximal normal abelian subgroup in G. Then A < G and let $A < B \le G$ with |B:A| = p, where all elements in B - A are of order p.

Suppose p=2. Then an involution $i \in B-A$ inverts each element in A. Since $C_G(A)=A$, we have $\exp(A)>2$ and $C_A(i)=\Omega_1(A)<A$. Let X be a maximal abelian subgroup in G containing $C_A(i)\times\langle i\rangle$, where $X\cap B=C_A(i)\times\langle i\rangle$. Let $X< Y\leq AX$

Download English Version:

https://daneshyari.com/en/article/4583715

Download Persian Version:

https://daneshyari.com/article/4583715

<u>Daneshyari.com</u>