

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

A PI degree theorem for quantum deformations

Pavel Etingof

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ARTICLE INFO

Article history: Received 21 February 2016 Available online 9 August 2016 Communicated by J.T. Stafford

Keywords: Polynomial identity Deformation Commutative domain

ABSTRACT

We prove that if a filtered quantization A of a finitely generated commutative domain over a field k is a PI algebra, then A is commutative if $\operatorname{char}(k) = 0$, and its PI degree is a power of p if $\operatorname{char}(k) = p$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let F be an algebraically closed field. We show that if a quantum formal deformation A of a commutative domain A_0 over F is a PI algebra, then A is commutative if $\operatorname{char}(F) = 0$, and has PI degree a power of p if $\operatorname{char}(F) = p > 0$. This implies the same result for filtered deformations (i.e., filtered algebras A such that $\operatorname{gr}(A) = A_0$).

Note that a quantum formal deformation of a commutative domain A_0 may fail to be PI, even for finitely generated A_0 in characteristic p (Example 3.3(2)). However, we don't know if this is possible for filtered deformations. Thus we propose

ALGEBRA

E-mail address: etingof@math.mit.edu.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.07.026} 0021\mathchar`{8693} @ 2016 Elsevier Inc. All rights reserved.$

Question 1.1. Let char(F) = p > 0, and A be a filtered deformation of a commutative finitely generated domain A_0 over F. Must A be a PI algebra? In other words, must the division ring of quotients of A be a central simple algebra?

This question is closely related to the question asked in the introduction to [2], which would have affirmative answer if the answer to Question 1.1 is affirmative. We don't know the answer to either of these questions even when A_0 is a polynomial algebra with generators in positive degrees.

2. Deformations of fields

Let F be an algebraically closed field, and A_0 a field extension of F. Let A be a quantum formal deformation of A_0 over $F[[\hbar]]$, i.e. an $F[[\hbar]]$ -algebra isomorphic to $A_0[[\hbar]]$ as an $F[[\hbar]]$ module and equipped with an isomorphism of algebras $A/(\hbar) \cong A_0$ (for basics and notation on deformations, see [3], Section 2).

Theorem 2.1. Suppose that A is a PI algebra of degree d.

(i) If $\operatorname{char} F = 0$, then d = 1 (i.e., A is commutative).

(ii) If $\operatorname{char} F = p > 0$, then d is a power of p.

Proof. Let *C* be the center of *A*. It is easy to see that the division algebra of quotients of *A* is $A[\hbar^{-1}]$ with center $C[\hbar^{-1}]$ (see [3], Example 2.7). Moreover, by Posner's theorem ([5], 13.6.5), $A[\hbar^{-1}]$ is a central division algebra over $C[\hbar^{-1}]$ of degree *d*, so $[A[\hbar^{-1}] : C[\hbar^{-1}]] = d^2$.

Let $C_0 = C/(\hbar)$. It is clear that C_0 is a subfield of A_0 , and C is a (commutative) formal deformation of C_0 .

Lemma 2.2. $[A_0 : C_0] = d^2$.

Proof. Let $a_1^0, ..., a_m^0 \in A_0$ be linearly independent over C_0 . Let $a_1, ..., a_m$ be lifts of these elements to A. Then $a_1, ..., a_m$ are linearly independent over C and hence over $C[\hbar^{-1}]$. Thus $m \leq d^2$. Moreover, if $a_1^0, ..., a_m^0$ are a basis of A_0 over C_0 then $a_1, ..., a_m$ are a free basis of A over C and hence a basis of $A[\hbar^{-1}]$ over $C[\hbar^{-1}]$, so $m = d^2$. \Box

Now for every integer $r \ge 0$, let $A_r \subset A_0$ be the field of all $x \in A_0$ which admit a lift to a central element of $A/(\hbar^{r+1})$. Note that $A_r \supset A_{r+1}$, and by Lemma 2.2, this is a finite field extension.

Let us now prove (i). Assume the contrary, i.e. that A is noncommutative. Let r be the largest integer such that $[a, b] \in \hbar^r A$ for all $a, b \in A$. Then we have a nonzero Poisson bracket on A_0 given by $\{a_0, b_0\} = \hbar^{-r}[a, b] \mod \hbar$, where a, b are any lifts of a_0, b_0 to A. Moreover, by definition $\{,\}$ is bilinear over A_r . Recall that $\{,\}$ is a derivation in each argument, and that any K-linear derivation of a finite extension of a field K of characDownload English Version:

https://daneshyari.com/en/article/4583749

Download Persian Version:

https://daneshyari.com/article/4583749

Daneshyari.com