A PI degree theorem for quantum deformations

Pavel Etingof

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

A R T I C L E I N F O

Article history:

Received 21 February 2016
Available online 9 August 2016
Communicated by J.T. Stafford
Keywords:
Polynomial identity
Deformation
Commutative domain

A B S T R A C T

We prove that if a filtered quantization A of a finitely generated commutative domain over a field k is a PI algebra, then A is commutative if $\operatorname{char}(k)=0$, and its PI degree is a power of p if $\operatorname{char}(k)=p$.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let F be an algebraically closed field. We show that if a quantum formal deformation A of a commutative domain A_{0} over F is a PI algebra, then A is commutative if $\operatorname{char}(F)=0$, and has PI degree a power of p if $\operatorname{char}(F)=p>0$. This implies the same result for filtered deformations (i.e., filtered algebras A such that $\left.\operatorname{gr}(A)=A_{0}\right)$.

Note that a quantum formal deformation of a commutative domain A_{0} may fail to be PI, even for finitely generated A_{0} in characteristic p (Example 3.3(2)). However, we don't know if this is possible for filtered deformations. Thus we propose

[^0]Question 1.1. Let $\operatorname{char}(F)=p>0$, and A be a filtered deformation of a commutative finitely generated domain A_{0} over F. Must A be a PI algebra? In other words, must the division ring of quotients of A be a central simple algebra?

This question is closely related to the question asked in the introduction to [2], which would have affirmative answer if the answer to Question 1.1 is affirmative. We don't know the answer to either of these questions even when A_{0} is a polynomial algebra with generators in positive degrees.

2. Deformations of fields

Let F be an algebraically closed field, and A_{0} a field extension of F. Let A be a quantum formal deformation of A_{0} over $F[[\hbar]]$, i.e. an $F[[\hbar]]$-algebra isomorphic to $A_{0}[[\hbar]]$ as an $F[[\hbar]]$ module and equipped with an isomorphism of algebras $A /(\hbar) \cong A_{0}$ (for basics and notation on deformations, see [3], Section 2).

Theorem 2.1. Suppose that A is a PI algebra of degree d.
(i) If $\operatorname{char} F=0$, then $d=1$ (i.e., A is commutative).
(ii) If $\operatorname{char} F=p>0$, then d is a power of p.

Proof. Let C be the center of A. It is easy to see that the division algebra of quotients of A is $A\left[\hbar^{-1}\right]$ with center $C\left[\hbar^{-1}\right]$ (see [3], Example 2.7). Moreover, by Posner's theorem ($[5], 13.6 .5$), $A\left[\hbar^{-1}\right]$ is a central division algebra over $C\left[\hbar^{-1}\right]$ of degree d, so $\left[A\left[\hbar^{-1}\right]\right.$: $\left.C\left[\hbar^{-1}\right]\right]=d^{2}$.

Let $C_{0}=C /(\hbar)$. It is clear that C_{0} is a subfield of A_{0}, and C is a (commutative) formal deformation of C_{0}.

Lemma 2.2. $\left[A_{0}: C_{0}\right]=d^{2}$.
Proof. Let $a_{1}^{0}, \ldots, a_{m}^{0} \in A_{0}$ be linearly independent over C_{0}. Let a_{1}, \ldots, a_{m} be lifts of these elements to A. Then a_{1}, \ldots, a_{m} are linearly independent over C and hence over $C\left[\hbar^{-1}\right]$. Thus $m \leq d^{2}$. Moreover, if $a_{1}^{0}, \ldots, a_{m}^{0}$ are a basis of A_{0} over C_{0} then a_{1}, \ldots, a_{m} are a free basis of A over C and hence a basis of $A\left[\hbar^{-1}\right]$ over $C\left[\hbar^{-1}\right]$, so $m=d^{2}$.

Now for every integer $r \geq 0$, let $A_{r} \subset A_{0}$ be the field of all $x \in A_{0}$ which admit a lift to a central element of $A /\left(\hbar^{r+1}\right)$. Note that $A_{r} \supset A_{r+1}$, and by Lemma 2.2, this is a finite field extension.

Let us now prove (i). Assume the contrary, i.e. that A is noncommutative. Let r be the largest integer such that $[a, b] \in \hbar^{r} A$ for all $a, b \in A$. Then we have a nonzero Poisson bracket on A_{0} given by $\left\{a_{0}, b_{0}\right\}=\hbar^{-r}[a, b] \bmod \hbar$, where a, b are any lifts of a_{0}, b_{0} to A. Moreover, by definition $\{$,$\} is bilinear over A_{r}$. Recall that $\{$,$\} is a derivation in each$ argument, and that any K-linear derivation of a finite extension of a field K of charac-

https://daneshyari.com/en/article/4583749

Download Persian Version
https://daneshyari.com/article/4583749

Daneshyari.com

[^0]: E-mail address: etingof@math.mit.edu.

