

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On covariants in exterior algebras for the even special orthogonal group

ALGEBRA

Salvatore Dolce^{a,b,*}

^a Università La Sapienza di Roma, Italy ^b University of Edinburgh, United Kingdom

ARTICLE INFO

Article history: Received 31 July 2015 Available online 31 May 2016 Communicated by Shrawan Kumar

Keywords: Invariant theory Polynomial identities Exterior algebras Algebras with involutions Symmetric matrices

ABSTRACT

Let $G := SO(2n, \mathbb{C})$ be the even special orthogonal group and let M_{2n}^+ (resp. M_{2n}^-) be the space of symmetric (resp. skew-symmetric) complex matrices with respect to the usual transposition.

We study the structure of $B^+ := \left(\bigwedge (M_{2n}^+)^* \otimes M_{2n}^- \right)^G$, the space of G-equivariant skew-symmetric matrix valued alternating multilinear maps on the space of symmetric n-tuples of matrices, with G acting by conjugation.

Further, we decompose B as the direct sum $B \simeq B^+ \oplus B^-$,

where $B^{\mp} := \left(\bigwedge (M_{2n}^{\bullet})^* \otimes M_{2n}^{\pm} \right)^G$. We prove that B^+ is a free module over a certain subalgebra of invariants $A := \left(\bigwedge (M_{2n}^{+})^* \right)^G$ of rank 2*n*. We give an explicit description for the basis of this module. Furthermore we prove new trace polynomial identities for symmetric matrices.

Finally we show, using a computer assisted computation made with the LiE software, that $B^- := \left(\bigwedge (M_{2n}^+)^* \otimes M_{2n}^+ \right)^G$ doesn't satisfy a similar property.

© 2016 Elsevier Inc. All rights reserved.

Correspondence to: Università La Sapienza di Roma, Italy. E-mail address: gsdolce@gmail.com.

Introduction

The problem of studying the irreducible components of the exterior algebra of a complex simple Lie algebra is a classical topic in representation theory (see for example [5]). A precise description of very special cases, like the adjoint representation [3] or the little adjoint representations [2], has been recently obtained. These modules of covariants have properties of freeness over suitable subalgebras of invariants. Furthermore, the results on the adjoint case in [3] can be stated and generalized to the context of infinitesimal symmetric spaces.

Let \mathfrak{g} be a complex finite dimensional semisimple Lie algebra and $\sigma : \mathfrak{g} \to \mathfrak{g}$ an indecomposable involution. Then we can classically decompose $\mathfrak{g} \simeq \mathfrak{k} \oplus \mathfrak{p}$, where \mathfrak{k} is the Lie algebra of σ -fixed points and \mathfrak{p} the eigenspace relative to -1. We denote the infinitesimal symmetric space associated to \mathfrak{p} by the pair $(\mathfrak{g}, \mathfrak{k})$. Let us remark that the adjoint action of \mathfrak{g} induces a natural action of \mathfrak{k} on \mathfrak{p} and consequently on $\bigwedge \mathfrak{p}^*$.

Then we have the following result:

Theorem 0.1. ([3,4]) With the previous notation, let $(\mathfrak{g},\mathfrak{k})$ be an infinitesimal symmetric space such that $(\bigwedge \mathfrak{p}^*)^{\mathfrak{k}}$ is an exterior algebra of type $\wedge(x_1, ..., x_r)$, where the x_i 's are ordered by their degree and $r := rk(\mathfrak{g}) - rk(\mathfrak{k})$. Then the algebra $B := (\bigwedge \mathfrak{p}^* \otimes \mathfrak{g})^{\mathfrak{k}}$ is a free module of rank 4r on the subalgebra of $(\bigwedge \mathfrak{p}^*)^{\mathfrak{k}}$ generated by the elements $x_1, ..., x_{r-1}$.

Despite being based on different approaches, the above-mentioned works rely on the property of the invariants of being an exterior algebra to deduce freeness properties.

Let us recall that, by the Hopf-Koszul–Samelson Theorem, the invariants $(\bigwedge \mathfrak{g}^*)^{\mathfrak{g}}$ for a complex simple Lie algebra \mathfrak{g} are always an exterior algebra in $rk(\mathfrak{g})$ generators of predictable degree. And apart from this case, in which we consider \mathfrak{g} as the infinitesimal symmetric space associated with the pair $(\mathfrak{g} \oplus \mathfrak{g}, \Delta(\mathfrak{g}))$, with $\Delta(\mathfrak{g})$ being the diagonal copy of \mathfrak{g} in $\mathfrak{g} \oplus \mathfrak{g}$, there are very few others with this property. They are in fact the pairs $(\mathfrak{sl}(2n), \mathfrak{sp}(2n)), (\mathfrak{sl}(2n+1), \mathfrak{so}(2n+1)), (\mathfrak{so}(2n), \mathfrak{so}(2n-1)), (\mathfrak{e}_6, \mathfrak{f}_4).$

In this paper we present an example of an infinitesimal symmetric space, associated to the pair $(\mathfrak{sl}(2n), \mathfrak{so}(2n))$, such that the invariants are not an exterior algebra, nevertheless we can deduce some kind of freeness property for covariants.

In fact we study the structure of a more general space, $B := (\bigwedge (M_{2n}^+)^* \otimes M_{2n})^G$, which could be seen as the space of the *G*-equivariant matrix valued alternating multilinear maps on the space of symmetric *n*-tuples of matrices, with $G = SO(2n, \mathbb{C})$ the even special orthogonal group acting by conjugation.

We put on B a structure of algebra defining a skew-symmetric product induced by the matrix product and then we see B as a module over the algebra of invariants $A := (\bigwedge(M_{2n}^+))^G$ in a natural way. We give a precise description of both these structures.

Furthermore, it is convenient for our goals to decompose B as the direct sum $B \simeq B^+ \oplus B^-$, where $B^{\mp} := \left(\bigwedge (M_{2n}^{\bullet})^* \otimes M_{2n}^{\pm}\right)^G$.

Download English Version:

https://daneshyari.com/en/article/4583763

Download Persian Version:

https://daneshyari.com/article/4583763

Daneshyari.com