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1. Introduction

Let J be an integral domain with identity and F its field of fractions. Our goal in this
paper is to prove the following theorem:

Theorem 1. H? (SLy (J[t,t7']) ; F) is infinite-dimensional.

This theorem generalizes several earlier results about the finiteness properties of
SLz (Z[t,t7']). In [5], Krsti¢c-McCool prove that SLa(J[t,t7']), among other related
groups, is not Fs.
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In [2], Bux~Wortman use geometric methods to prove that SLa(Z[t,t71]) is also not
FP,. In particular, they use the action of SLa(Z[t,t~1]) on a product of locally infinite
trees. Bux—Wortman also ask whether their proof can be extended to show the stronger
result that Ha(SL2(Z[t,t71]);Z) is infinitely generated. Knudson proves that this is the
case in [6] using algebraic methods. Note that this result also follows from Theorem 1:
Since Q is a field,

H?(SLz(Z[t,t™"]); Q) ~ Hom(Ha(SL2(Z[t, t~']); Q), Q)

Since Hom(Hz(SL2(Z[t,t1]); Q), Q) is infinite dimensional, so is Ha(SL2(Z[t,t71]);
Q), which implies that Ha(SLa(Z[t,t71]);Z) is not finitely generated as a Z-module.

The methods in this paper will be geometric. We will define two spaces on which
SLa(J[t,t71]) acts: one a Euclidean building as in [2], and the other a classifying space
for SLo(J[t,t71]). A map between these spaces will allow us to explicitly define an infinite
family of independent cocycles in H?(SLo(J[t, t]); F).

The methods used are based on those of Cesa—Kelly in [4], where they are used to
show that H? (SL3(Z[t]); Q) is infinite-dimensional. Wortman follows a similar outline
in [7].

2. The Euclidean building

Throughout, let J be an integral domain with identity, F the field of fractions over J,
and I' = SLa(J[t,t71]).

We begin by recalling the structure of a Euclidean building on which I' acts. The
construction and notation follow Bux—Wortman in [2]. Let v, and vy be the valuations
on F(t) giving multiplicity of zeros at infinity and at zero, respectively. More precisely,
Voo (%) = deg(q(t)) — deg(p(t)), and vg (%t") = n, where t does not divide the
polynomials r and s. Let T, and Ty be the Bruhat—Tits trees associated to SLa(F(t))
with the valuations v, and vg, respectively. We will consider each tree as a metric space
with edges having length 1. Let X = T, x Tp.

Since F((t71)) (respectively F((t))) is the completion of F(t) with respect to v
(resp. vg), SLa(F((t71))) (resp. SLa(F(t))) acts on the tree T, (resp. Tp). Therefore
the group SLa(F((t71))) x SLa(F((t))) acts on X.

Throughout this paper, we will regard I' and SLo(F(t)) as diagonal subgroups of
SLo(F((t71))) x SLa(F((t))), which act on X via that embedding.

Let Lo (resp. Lg) be the unique geodesic line in To, (resp. Tp) stabilized by the
diagonal subgroup of SLa(F(t)). Let foo : R — Lo (resp. o : R — Lg) be an
isometry with /.. (0) (resp. £o(0)) the unique vertex with stabilizer SLa(F[t~]) (resp.
SL2(F[t])). Let xo = (£o0(0),£49(0)) serve as a basepoint of X and ¥ = Lo, x Lg so that
3 is an apartment of X.
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