

Infinite-dimensional cohomology of $\mathbf{SL}_2(\mathbb{Z}[t, t^{-1}])$

Sarah Cobb 1

Department of Mathematics, University of Utah, 155 S 1400 E Room 233, Salt Lake City, UT 84112, United States

ARTICLE INFO

Article history: Received 27 June 2015 Available online 31 May 2016 Communicated by Inna Capdeboscq

Keywords: Geometric group theory Buildings Cohomology

ABSTRACT

For J an integral domain and F its field of fractions, we construct a map from the 3-skeleton of the classifying space for $\Gamma = \mathbf{SL}_2(J[t, t^{-1}])$ to a Euclidean building on which Γ acts. We then find an infinite family of independent cocycles in the building and lift them to the classifying space, thus proving that the cohomology group $H^2(\mathbf{SL}_2(J[t, t^{-1}]); F)$ is infinite-dimensional.

 \odot 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let J be an integral domain with identity and F its field of fractions. Our goal in this paper is to prove the following theorem:

Theorem 1. $H^2(\mathbf{SL}_2(J[t,t^{-1}]);F)$ is infinite-dimensional.

This theorem generalizes several earlier results about the finiteness properties of $\mathbf{SL}_2(\mathbb{Z}[t,t^{-1}])$. In [5], Krstić-McCool prove that $\mathbf{SL}_2(J[t,t^{-1}])$, among other related groups, is not F_2 .

 $E\text{-}mail\ address:\ sarah.cobb@mwsu.edu.$

 $^{^1}$ Present address: Department of Mathematics, Midwestern State University, 3410 Taft Blvd, Wichita Falls, TX 76308, United States.

In [2], Bux–Wortman use geometric methods to prove that $\mathbf{SL}_2(\mathbb{Z}[t, t^{-1}])$ is also not FP_2 . In particular, they use the action of $\mathbf{SL}_2(\mathbb{Z}[t, t^{-1}])$ on a product of locally infinite trees. Bux–Wortman also ask whether their proof can be extended to show the stronger result that $H_2(\mathbf{SL}_2(\mathbb{Z}[t, t^{-1}]); \mathbb{Z})$ is infinitely generated. Knudson proves that this is the case in [6] using algebraic methods. Note that this result also follows from Theorem 1: Since \mathbb{Q} is a field,

$$H^2(\mathbf{SL}_2(\mathbb{Z}[t,t^{-1}]);\mathbb{Q}) \simeq \operatorname{Hom}(H_2(\mathbf{SL}_2(\mathbb{Z}[t,t^{-1}]);\mathbb{Q}),\mathbb{Q})$$

Since Hom $(H_2(\mathbf{SL}_2(\mathbb{Z}[t,t^{-1}]);\mathbb{Q}),\mathbb{Q})$ is infinite dimensional, so is $H_2(\mathbf{SL}_2(\mathbb{Z}[t,t^{-1}]);\mathbb{Q})$, which implies that $H_2(\mathbf{SL}_2(\mathbb{Z}[t,t^{-1}]);\mathbb{Z})$ is not finitely generated as a \mathbb{Z} -module.

The methods in this paper will be geometric. We will define two spaces on which $\mathbf{SL}_2(J[t, t^{-1}])$ acts: one a Euclidean building as in [2], and the other a classifying space for $\mathbf{SL}_2(J[t, t^{-1}])$. A map between these spaces will allow us to explicitly define an infinite family of independent cocycles in $H^2(\mathbf{SL}_2(J[t, t^{-1}]); F)$.

The methods used are based on those of Cesa–Kelly in [4], where they are used to show that $H^2(\mathbf{SL}_3(\mathbb{Z}[t]);\mathbb{Q})$ is infinite-dimensional. Wortman follows a similar outline in [7].

2. The Euclidean building

Throughout, let J be an integral domain with identity, F the field of fractions over J, and $\Gamma = \mathbf{SL}_2(J[t, t^{-1}]).$

We begin by recalling the structure of a Euclidean building on which Γ acts. The construction and notation follow Bux–Wortman in [2]. Let ν_{∞} and ν_0 be the valuations on F(t) giving multiplicity of zeros at infinity and at zero, respectively. More precisely, $\nu_{\infty}\left(\frac{p(t)}{q(t)}\right) = \deg(q(t)) - \deg(p(t))$, and $\nu_0\left(\frac{r(t)}{s(t)}t^n\right) = n$, where t does not divide the polynomials r and s. Let T_{∞} and T_0 be the Bruhat–Tits trees associated to $\mathbf{SL}_2(F(t))$ with the valuations ν_{∞} and ν_0 , respectively. We will consider each tree as a metric space with edges having length 1. Let $X = T_{\infty} \times T_0$.

Since $F((t^{-1}))$ (respectively F((t))) is the completion of F(t) with respect to ν_{∞} (resp. ν_0), $\mathbf{SL}_2(F((t^{-1})))$ (resp. $\mathbf{SL}_2(F(t))$) acts on the tree T_{∞} (resp. T_0). Therefore the group $\mathbf{SL}_2(F((t^{-1}))) \times \mathbf{SL}_2(F((t)))$ acts on X.

Throughout this paper, we will regard Γ and $\mathbf{SL}_2(F(t))$ as diagonal subgroups of $\mathbf{SL}_2(F((t^{-1}))) \times \mathbf{SL}_2(F((t)))$, which act on X via that embedding.

Let L_{∞} (resp. L_0) be the unique geodesic line in T_{∞} (resp. T_0) stabilized by the diagonal subgroup of $\mathbf{SL}_2(F(t))$. Let $\ell_{\infty} : \mathbb{R} \longrightarrow L_{\infty}$ (resp. $\ell_0 : \mathbb{R} \longrightarrow L_0$) be an isometry with $\ell_{\infty}(0)$ (resp. $\ell_0(0)$) the unique vertex with stabilizer $\mathbf{SL}_2(F[t^{-1}])$ (resp. $\mathbf{SL}_2(F[t])$). Let $x_0 = (\ell_{\infty}(0), \ell_0(0))$ serve as a basepoint of X and $\Sigma = L_{\infty} \times L_0$ so that Σ is an apartment of X.

Download English Version:

https://daneshyari.com/en/article/4583764

Download Persian Version:

https://daneshyari.com/article/4583764

Daneshyari.com