

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Nonlinear identities with skew derivations

Chen-Lian Chuang

Department of Mathematics, National Taiwan University, Taipei 106, Taiwan

ARTICLE INFO

Article history: Received 6 November 2015 Communicated by Louis Rowen

MSC: 16N60

 $16R50 \\ 16S40$

16T15 16W20

16W22

16W25

16W25

Keywords:
Prime ring
Automorphism
Skew derivation
Identity
Coalgebras
Pointed coalgebras
The complete ring of quotients
Utumi quotient ring

ABSTRACT

Let R be a prime ring with the extended centroid \mathbf{c} . Suppose that R is acted by a pointed coalgebra with group-like elements acting as automorphisms of R. A generalized polynomial with variables acted by the coalgebra is called an identity if it vanishes on R. We prove the following:

- (1) If \mathbf{c} is a perfect field, then any such identity is a consequence of simple basic identities defined in [6] and GPIs of R with variables acted by Frobenius automorphisms.
- (2) If \mathbf{c} is not a perfect field, then any such identity is a consequence of simple basic identities defined in [6] and GPIs of R.

With this, we extend Yanai's result [25] to "nonlinear identities". These are actually special instances of our Theorems 1 and 2 below respectively, which extend Kharchenko's theory of differential identities [14,15] to the context of expansion closed word sets introduced in [6].

 $\ensuremath{{\mathbb O}}$ 2016 Elsevier Inc. All rights reserved.

0. Results

Throughout, R is a prime ring in the sense that aRb = 0 implies a = 0 or b = 0 for $a, b \in R$. By a (g, h)-derivation of R, where g, h are automorphisms of R, we mean a map $\delta : x \in R \mapsto x^{\delta} \in U$ such that

$$(x+y)^{\delta} = x^{\delta} + y^{\delta}$$
 and $(xy)^{\delta} = x^g y^{\delta} + x^{\delta} y^h$ for $x, y \in R$.

A (g,h)-derivation is generally called a *skew* derivation and the ordered pair (g,h) is called the type of the skew derivation. Consider a polynomial ϕ with its coefficients in R and with its variables acted by composition products of finitely many automorphisms and skew derivations. If ϕ vanishes identically for any evaluations of its variables in R, then we call ϕ an identity with skew derivations of R. Our aim here is to investigate such identities along the line of Kharchenko's theory of differential identities with automorphisms, which is developed in a series of papers [13–15]. As is shown in this celebrated work, we cannot just sit in R but have to work in the Martindale quotient ring of R. For more generality, let U denote the complete ring of left quotients of R, also called the left Utumi quotient ring of R. We refer to [1,11,19] or [23] for the definition of U. The center of U, denoted by \mathbf{c} , is called the extended centroid of R.

Given a set G of automorphisms of R, let L_G denote the set of all (g, h)-derivations with $g, h \in G$. Consider the composition product

$$\Delta := \delta_1 \cdots \delta_n, \quad \text{where each } \delta_i \in G \cup L_G.$$
 (0)

Let (g_i, h_i) be the type of $\delta_i \in L_G$. Given a subset S of $\{i : \delta_i \in L_G\}$, let w_S denote the product obtained from Δ by replacing δ_i by g_i for $i \in \{i : \delta_i \in L_G\} \setminus S$. Also let w_S' be the product obtained from Δ by replacing δ_i by h_i for $i \in S$. For $x, y \in R$, we have $(xy)^{\Delta} = \sum_S x^{w_S} y^{w_S'}$, where S ranges over all subsets of $\{i : \delta_i \in L_G\}$. Let |S| denote the cardinality of S. Then w_S and w_S' contain respectively |S| factors and $(\nu - |S|)$ factors of $\delta_i \in L_G$. So we call w_S and w_S' complementary expansion subwords of Δ . Let g, h be the products obtained from Δ respectively by replacing all $\delta_i \in L_G$ by g_i and by replacing all $\delta_i \in L_G$ by h_i . If $S = \{i : \delta_i \in L_G\}$ then $w_S = \Delta$ and $w_S' = h$. If $S = \emptyset$ then $w_S' = \Delta$ and $w_S = g$. Singling out the two terms with $S = \emptyset$ and $S = \{i : \delta_i \in L_G\}$, we rewrite

$$(xy)^{\Delta} = x^g y^{\Delta} + x^{\Delta} y^h + \sum_{S}' x^{w_S} y^{w'_S}$$
 for $x, y \in R$, (0')

where \sum_{S}' ranges all S with $\emptyset \subsetneq S \subsetneq \{i : \delta_i \in L_G\}$. Motivated by this, we consider the following more general notion in order to bring in elements of R or, more generally, of U as coefficients.

Definition 1. ([6], p. 294) By an expansion closed word set, we mean a set Ω of symbols satisfying the following three conditions:

Download English Version:

https://daneshyari.com/en/article/4583783

Download Persian Version:

https://daneshyari.com/article/4583783

Daneshyari.com