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1. Introduction

In this note we completely determine the Zariski spectrum of homogeneous prime
ideals in KMW(F), the Milnor-Witt K-theory of a field F. This graded ring contains
information related to quadratic forms over F — in fact, KMW(F) = GW(F), the
Grothendieck—Witt ring of ' — and the Milnor K-theory of F, which appears as a
natural quotient of KW (F). While the prime ideals in GW (F) are known classically
via a theorem of Lorenz and Leicht [4] (see also [1, Remark 10.2]), we discover a more
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refined structure in Spec” (KMW(F)), including a novel class of characteristic 2 primes
indexed by the orderings on F' which all collapse to the fundamental ideal I C GW (F)
in degree 0.

Much of the interest in KMW (F) stems from the distinguished role it plays in Vo-
evodsky’s stable motivic homotopy category, SHAl(F ). Indeed, a theorem of Morel [7,
§6, p. 251] identifies KMW (F) with a graded ring of endomorphisms of the unit ob-
ject in s (F). As s (F) is a tensor triangulated category (with tensor given by
smash product, A), it may be studied via Balmer’s methods of tensor triangular ge-
ometry [1]. More specifically, we can look at the full subcategory of compact objects,
SHA' (F)°. In this context, the goal is to determine the structure of the triangular spec-
trum SpC(SHAl (F)°) of thick subcategories of sHA' (F)¢ which satisfy a “prime ideal”
condition with respect to A. Balmer’s primary tool in the study of triangular spectra is
a naturally defined continuous map

p* : Spe(SHA' (F)) — Spec (KMW (F))

with codomain the Zariski spectrum of homogeneous prime ideals in KMW (F).

By identifying Spech(Ky W(F)), we undertake a first step in Balmer’s program for
studying the tensor triangular geometry of st (F). In particular, this raises the pos-
sibility of studying surjectivity properties of p® (which, in general, are unknown —
see [1, Remark 10.5]) by explicitly constructing triangular primes lying over points in
Spec” (KMW (F)).

Outline of the paper. The determination of Spec™(KMW (F)) proceeds as follows. Sec-
tion 2 gives general background on Milnor-Witt K-theory and states our main result.
In subsections 3.1 and 3.2, the homogeneous spectra of two quotients of KMW (F) are
determined, and in subsection 3.3 the two quotient spectra are stitched together to get
the full spectrum.

2. Milnor-Witt K-theory

The Milnor-Witt K-theory of a field, KMW (F), is a graded ring associated to a field
by taking a certain quotient of the free algebra on a symbol n and the set of formally
bracketed units in the field as follows:

Definition 2.1. For a set S, [S] = {[s] : s € S} is the set of (purely formal) symbols in S.
The free associative algebra on [F*] U {n} is

FTAI([FX] U {7]}) = Z ;041 05, * Q5 € Z, 055 € [FX] U {77}, neN

1<i<n

with multiplication and addition completely determined by the ring axioms.
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