

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Hilbert series of modules over positively graded polynomial rings

Lukas Katthän ^{a,1}, Julio José Moyano-Fernández ^{b,*,2}, Jan Uliczka ^c

- ^a Institut für Mathematik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 6-10, D-60325 Frankfurt am Main, Germany
- ^b Departamento de Matemáticas and Institut de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, Campus de Riu Sec, E-12071 Castellón de la Plana, Spain
- ^c Institut für Mathematik, Universität Osnabrück, Albrechtstraße 28a, D-49076 Osnabrück, Germany

ARTICLE INFO

Article history: Received 16 April 2014 Available online 10 May 2016 Communicated by Bernd Ulrich

MSC: 13D40 05E40

Keywords:
Generating function
Finitely generated module
Hilbert series
Graded polynomial ring

ABSTRACT

In this note, we give examples of formal power series satisfying certain conditions that cannot be realized as Hilbert series of finitely generated modules. This answers to the negative a question raised in a recent article by the second and the third author. On the other hand, we show that the answer is positive after multiplication with a scalar.

 \odot 2016 Elsevier Inc. All rights reserved.

E-mail addresses: katthaen@math.uni-frankfurt.de (L. Katthän), moyano@uji.es (J.J. Moyano-Fernández), juliczka@uos.de (J. Uliczka).

^{*} Corresponding author.

Supported by German Research Council DFG-GRK 1916.

² Partially supported by the German Research Council DFG-GRK 1916, by the Spanish Government Ministerio de Economía y Competitividad (MINECO), grants MTM2012-36917-C03-03 and MTM2015-65764-C3-2-P, as well as by Universitat Jaume I, grant P1-1B2015-02.

1. Introduction

Let \mathbb{K} be a field, and let $R = \mathbb{K}[X_1, \dots, X_n]$ be the positively \mathbb{Z} -graded polynomial ring with deg $X_i = d_i \geq 1$ for every $i = 1, \dots, n$. Consider a finitely generated graded R-module $M = \bigoplus_k M_k$ over R. The graded components M_k of M are finitely dimensional \mathbb{K} -vector spaces, and, since R is positively graded, $M_k = 0$ for $k \ll 0$. The formal Laurent series

$$H_M(t) := \sum_{k \in \mathbb{Z}} (\dim_K M_k) t^k \in \mathbb{Z}[\![t]\!][t^{-1}]$$

is called the Hilbert series of M. Obviously every coefficient of this series is nonnegative. Moreover, it is well-known that $H_M(t)$ can be written as a rational function with denominator $(1-t^{d_1})\cdots(1-t^{d_n})$. In fact, in the standard graded case (i.e. $d_1=\cdots=d_n=1$) these two properties characterize the Hilbert series of finitely generated R-modules among the formal Laurent series $\mathbb{Z}[\![t]\!][t^{-1}]$, cf. Uliczka [4, Cor. 2.3].

In the non-standard graded case, the situation is more involved. A characterization of Hilbert series was obtained by the second and third author in [2]:

Theorem 1.1 (Moyano–Uliczka). Let $P(t) \in \mathbb{Z}[\![t]\!][t^{-1}]$ be a formal Laurent series which is rational with denominator $(1-t^{d_1})\cdots(1-t^{d_n})$. Then P can be realized as Hilbert series of some finitely generated R-module if and only if it can be written in the form

$$P(t) = \sum_{I \subseteq \{1,\dots,n\}} \frac{Q_I(t)}{\prod_{i \in I} (1 - t^{d_i})}$$
(1.1)

with nonnegative $Q_I \in \mathbb{Z}[t, t^{-1}]$.

However, it remained an open question in [2, Remark 2.3] if the condition of the Theorem is satisfied by *every* rational function with the given denominator and nonnegative coefficients. In this paper we answer this question to the negative. In Section 3 we provide examples of rational functions that do not admit a decomposition (1.1) and are thus not realizable as Hilbert series. On the other hand, we show the following in Corollary 2.5 and Theorem 2.6:

Theorem 1.2. Assume that the degrees d_1, \ldots, d_n are pairwise either coprime or equal. Then the following holds:

- 1. If n = 2, then every rational function $P(t) \in \mathbb{Z}[[t]][t^{-1}]$ with the given denominator and nonnegative coefficients admits a decomposition as in (1.1).
- 2. In general, the same still holds up to multiplication with a scalar.

In particular, there is a formal Laurent series P(t) with integral coefficients such that 2P(t), but not P(t), is the Hilbert series of a finitely generated graded R-module,

Download English Version:

https://daneshyari.com/en/article/4583827

Download Persian Version:

https://daneshyari.com/article/4583827

<u>Daneshyari.com</u>