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In this note, we give examples of formal power series satisfying 
certain conditions that cannot be realized as Hilbert series of 
finitely generated modules. This answers to the negative a 
question raised in a recent article by the second and the third 
author. On the other hand, we show that the answer is positive 
after multiplication with a scalar.
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1. Introduction

Let K be a field, and let R = K[X1, . . . , Xn] be the positively Z-graded polynomial 
ring with degXi = di ≥ 1 for every i = 1, . . . , n. Consider a finitely generated graded 
R-module M =

⊕
k Mk over R. The graded components Mk of M are finitely dimensional 

K-vector spaces, and, since R is positively graded, Mk = 0 for k � 0. The formal Laurent 
series

HM (t) :=
∑
k∈Z

(dimK Mk)tk ∈ Z[[t]][t−1]

is called the Hilbert series of M . Obviously every coefficient of this series is nonnegative. 
Moreover, it is well-known that HM (t) can be written as a rational function with denomi-
nator (1 − td1) · · · (1 − tdn). In fact, in the standard graded case (i.e. d1 = · · · = dn = 1) 
these two properties characterize the Hilbert series of finitely generated R-modules 
among the formal Laurent series Z[[t] ][t−1], cf. Uliczka [4, Cor. 2.3].

In the non-standard graded case, the situation is more involved. A characterization 
of Hilbert series was obtained by the second and third author in [2]:

Theorem 1.1 (Moyano–Uliczka). Let P (t) ∈ Z[[t] ][t−1] be a formal Laurent series which 
is rational with denominator (1 − td1) · · · (1 − tdn). Then P can be realized as Hilbert 
series of some finitely generated R-module if and only if it can be written in the form

P (t) =
∑

I⊆{1,...,n}

QI(t)∏
i∈I (1 − tdi) (1.1)

with nonnegative QI ∈ Z[t, t−1].

However, it remained an open question in [2, Remark 2.3] if the condition of the Theo-
rem is satisfied by every rational function with the given denominator and nonnegative 
coefficients. In this paper we answer this question to the negative. In Section 3 we provide 
examples of rational functions that do not admit a decomposition (1.1) and are thus not 
realizable as Hilbert series. On the other hand, we show the following in Corollary 2.5
and Theorem 2.6:

Theorem 1.2. Assume that the degrees d1, . . . , dn are pairwise either coprime or equal. 
Then the following holds:

1. If n = 2, then every rational function P (t) ∈ Z[[t] ][t−1] with the given denominator 
and nonnegative coefficients admits a decomposition as in (1.1).

2. In general, the same still holds up to multiplication with a scalar.

In particular, there is a formal Laurent series P (t) with integral coefficients such 
that 2P (t), but not P (t), is the Hilbert series of a finitely generated graded R-module, 
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