

Quantum automorphism group of the lexicographic product of finite regular graphs

Arthur Chassaniol

ARTICLE INFO

Article history: Received 18 May 2015 Available online 3 March 2016 Communicated by Nicolás Andruskiewitsch

Keywords: Quantum permutation group Quantum automorphism of graph Quantum permutation algebras Lexicographic product Quantum groups Free wreath product

ABSTRACT

We study the quantum automorphism group of the lexicographic product of two finite regular graphs, providing a quantum generalization of Sabidussi's structure theorem on the automorphism group of such a graph.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A quantum permutation group on n points is a compact quantum group acting faithfully on the classical space consisting of n points. The following facts were discovered by Wang [16].

- (1) There exists a largest quantum permutation group on n points, now denoted S_n^+ , and called *the* quantum permutation groups on n points.
- (2) The quantum group S_n^+ is infinite-dimensional if $n \ge 4$, and hence in particular an infinite compact quantum group can act faithfully on a finite classical space.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.01.036} 0021\mbox{-}8693/\mbox{©}\ 2016\ Elsevier\ Inc.\ All\ rights\ reserved.$

E-mail address: arthur.chassaniol@gmail.com.

Very soon after Wang's paper [16], the representation theory of S_n^+ was described by Banica [1]: it is similar to the one of SO(3) and can be described using tensor categories of non-crossing partitions. This description, further axiomatized and generalized by Banica–Speicher [5], led later to spectacular connections with free probability theory, see e.g. [9].

The next natural question was the following one: does S_n^+ have many non-classical quantum subgroups, or is it isolated as an infinite quantum group acting faithfully on a finite classical space?

In order to find quantum subgroups of S_n^+ , the quantum automorphism group of a finite graph was defined in [6,2]. This construction indeed produced many examples of non-classical quantum permutation groups, answering positively to the above question. The known results on the computation of quantum symmetry groups of graphs are summarized in [4], where the description of the quantum symmetry group of vertex-transitive graphs of small order (up to 11) is given (with an exception for the Petersen graph, whose quantum automorphism group remains mysterious).

The present paper is a contribution to the study of quantum automorphism groups of finite graphs: we study the quantum automorphism group of a lexicographic product of finite regular graphs, for which we generalize the results from [4]. The description of the quantum automorphism group of some lexicographic product of finite graphs was, amongst other ingredients, a key step in [4] in the description of the quantum automorphism group of small graphs. Recall that if X, Y are finite graphs, their lexicographic product is, roughly speaking, obtained by putting a copy of X at each vertex of Y (see Section 3 for details). There is, in general, a group embedding

$$\operatorname{Aut}(X) \wr \operatorname{Aut}(Y) \subset \operatorname{Aut}(X \circ Y) \quad (*)$$

where the group on the left is the wreath product of $\operatorname{Aut}(X)$ by $\operatorname{Aut}(Y)$. A quantum analogue of the above embedding is given in [4], using the free wreath product from [7] and a sufficient spectral condition was given to ensure that the quantum analogue of the embedding is an isomorphism. However, there exist (vertex-transitive) graphs of order ≥ 12 that do not satisfy the spectral assumption, and for which the embedding (*) is an isomorphism (see Example 4.14), hence the results in [4] are not sufficient to fully understand quantum symmetry groups of lexicographic products.

A necessary and sufficient condition on the graphs X, Y in order that the embedding (*) be an isomorphism was given by Sabidussi in [14] (see Section 4). The conditions look slightly technical at first sight, but are very easy to check in practice. In this paper we provide a quantum generalization of Sabidussi's result: we show that for a pair of regular graphs X, Y, the quantum analogue of the embedding (*) is an isomorphism if and only if the graphs satisfy Sabidussi's conditions: see Theorem 4.5. Our result covers many graphs that do not satisfy the spectral conditions from [4].

As a final comment, we wish to point out that our result, which expresses certain quantum automorphism groups of finite graphs as free wreath products, will be useful Download English Version:

https://daneshyari.com/en/article/4583834

Download Persian Version:

https://daneshyari.com/article/4583834

Daneshyari.com