#### Journal of Algebra 456 (2016) 182-189



#### Contents lists available at ScienceDirect

### Journal of Algebra

www.elsevier.com/locate/jalgebra

# On the vanishing of local cohomology of the absolute integral closure in positive characteristic $\stackrel{\star}{\approx}$



ALGEBRA

#### Pham Hung Quy

Department of Mathematics, FPT University, Hoa Lac Hi-Tech Park, Ha Noi, Viet Nam

#### ARTICLE INFO

Article history: Received 29 May 2015 Available online 15 March 2016 Communicated by Bernd Ulrich

MSC: 13A35 13D45 13B40 13D22 13H10 14B15

Keywords: Absolute integral closure Local cohomology Big Cohen–Macaulay Characteristics p

#### ABSTRACT

The aim of this paper is to extend the main result of C. Huneke and G. Lyubeznik in [Adv. Math. 210 (2007), 498–504] to the class of rings that are images of Cohen–Macaulay local rings. Namely, let R be a local Noetherian domain of positive characteristic that is an image of a Cohen–Macaulay local ring. We prove that all local cohomology of R (below the dimension) maps to zero in a finite extension of the ring. As a direct consequence we obtain that the absolute integral closure of R is a big Cohen–Macaulay algebra. Since every excellent local ring is an image of a Cohen–Macaulay local ring, this result is a generalization of the main result of M. Hochster and Huneke in [Ann. of Math. 135 (1992), 45–79] with a simpler proof.

© 2016 Elsevier Inc. All rights reserved.

*E-mail address:* quyph@fpt.edu.vn.

 $<sup>^{\,\</sup>pm}$  This work is partially supported by a fund of Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2014.25.

 $<sup>\</sup>label{eq:http://dx.doi.org/10.1016/j.jalgebra.2016.02.017\\0021-8693/ © 2016 Elsevier Inc. All rights reserved.$ 

#### 1. Introduction

Let  $(R, \mathfrak{m})$  be a commutative Noetherian local domain with fraction field K. The *absolute integral closure* of R, denoted  $R^+$ , is the integral closure of R in a fixed algebraic closure  $\overline{K}$  of K.

A famous result of M. Hochster and C. Huneke says that if  $(R, \mathfrak{m})$  is an excellent local Noetherian domain of positive characteristic p > 0, then  $R^+$  is a (balanced) big Cohen–Macaulay algebra, i.e. every system of parameters in R becomes a regular sequence in  $R^+$  (cf. [7]). Furthermore, K.E. Smith in [15] proved that the tight closure of an ideal generated by parameters is the contraction of its extension in  $R^+$ :  $I^* = IR^+ \cap R$ . This property is not true for every ideal I in an excellent Noetherian domain since tight closure does not commute with localization (cf. [1]).

As mentioned above,  $H^i_{\mathfrak{m}}(R^+) = 0$  for all  $i < \dim R$  provided R is an excellent local Noetherian domain of positive characteristic. Hence, the natural homomorphism  $H^i_{\mathfrak{m}}(R) \to H^i_{\mathfrak{m}}(R^+)$ , induced from the inclusion  $R \to R^+$ , is the zero map for all i < 1 $\dim R$ . In the case R is an image of a Gorenstein (not necessarily excellent) local ring, as the main result of [8], Huneke and G. Lyubeznik proved a stronger conclusion that one can find a finite extension ring  $S, R \subseteq S \subseteq R^+$ , such that the natural map  $H^i_{\mathfrak{m}}(R) \to$  $H^i_{\mathfrak{m}}(S)$  is zero for all  $i < \dim R$ . Therefore, they obtained a simpler proof for the result of Hochster and Huneke in the cases where the assumptions overlap, e.g., for complete Noetherian local domain. The techniques used in [8] are the Frobenius action on the local cohomology, (modified) equation lemma (cf. [7,15,8]) and the local duality theorem (this is the reason of the assumption that R is an image of a Gorenstein local ring). The motivation of the present paper is our belief: If a result was shown by the local duality theorem, then it can be proven under the assumption that the ring is an image of a Cohen-Macaulay local ring (for example, see [12]). The main result of this paper extends Huneke–Lyubeznik's result to the class of rings that are images of Cohen–Macaulay local rings. Namely, we prove the following.

**Theorem 1.1.** Let  $(R, \mathfrak{m})$  be a commutative Noetherian local domain containing a filed of positive characteristic p. Let K be the fraction field of R and  $\overline{K}$  an algebraic closure of K. Assume that R is an image of a Cohen-Macaulay local ring. Let R' be an R-subalgebra of  $\overline{K}$  (i.e.  $R \subseteq R' \subseteq \overline{K}$ ) that is a finite R-module. Then there is an R'-subalgebra R''of  $\overline{K}$  (i.e.  $R' \subseteq R'' \subseteq \overline{K}$ ) that is finite as an R-module such that the natural map  $H^i_{\mathfrak{m}}(R') \to H^i_{\mathfrak{m}}(R'')$  is the zero map for all  $i < \dim R$ .

As a direct application of Theorem 1.1 we obtain that the absolute integral closure  $R^+$  is a big Cohen–Macaulay algebra (cf. Corollary 3.2). It worth be noted that every excellent local ring is an image of a Cohen–Macaulay excellent local ring by T. Kawasaki (cf. [9, Corollary 1.2]). Therefore, our results also extend the original result of Hochster and Huneke with a simpler proof. The main results will be proven in the last section. In

Download English Version:

## https://daneshyari.com/en/article/4583840

Download Persian Version:

https://daneshyari.com/article/4583840

Daneshyari.com