

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Degree three unramified cohomology groups $^{\bigstar, \bigstar \bigstar}$

Algebra

Akinari Hoshi^a, Ming-chang Kang^b, Aiichi Yamasaki^c

^a Department of Mathematics, Niigata University, Niigata, Japan

^b Department of Mathematics, National Taiwan University, Taipei, Taiwan

^c Department of Mathematics, Kyoto University, Kyoto, Japan

ARTICLE INFO

Article history: Received 12 May 2015 Available online 8 April 2016 Communicated by Michel Van den Bergh

MSC: 14E0812G05

Keywords: Rationality problem Noether's problem Unramified cohomology group Unramified Brauer groups p-Groups

ABSTRACT

Let k be any field, G be a finite group. Let G act on the rational function field $k(x_q : q \in G)$ by k-automorphisms defined by $h \cdot x_g = x_{hg}$ for any $g, h \in G$. Denote by k(G) = $k(x_g : g \in G)^G$, the fixed subfield. Noether's problem asks whether k(G) is rational (= purely transcendental) over k. The unramified Brauer group $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G))$ and the unramified cohomology $H^3_{\mathrm{nr}}(\mathbb{C}(G),\mathbb{Q}/\mathbb{Z})$ are obstructions to the rationality of $\mathbb{C}(G)$ (see [14] and [5]). Peyre proves that, if p is an odd prime number, then there is a group G such that $|G| = p^{12}$, $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)) = \{0\}, \text{ but } H^3_{\operatorname{nr}}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq \{0\}; \text{ thus } \mathbb{C}(G) \text{ is }$ not stably \mathbb{C} -rational [12]. Using Peyre's method, we are able to find groups G with $|G| = p^9$ where p is an odd prime number such that $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)) = \{0\}, H^3_{\operatorname{nr}}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \neq \{0\}.$ © 2016 Elsevier Inc. All rights reserved.

 $^{^{\}star}\,$ This work was partially supported by JSPS KAKENHI Grant Numbers 24540019, 25400027.

Parts of the work were finished when the first-named author and the third-named author were visiting the National Center for Theoretic Sciences (Taipei Office), whose support is gratefully acknowledged.

E-mail addresses: hoshi@math.sc.niigata-u.ac.jp (A. Hoshi), kang@math.ntu.edu.tw (M.-c. Kang), aiichi.yamasaki@gmail.com (A. Yamasaki).

1. Introduction

Let k be a field, and L be a finitely generated field extension of k. L is called k-rational (or rational over k) if L is purely transcendental over k, i.e. L is isomorphic to some rational function field over k. L is called stably k-rational if $L(y_1, \ldots, y_m)$ is k-rational for some y_1, \ldots, y_m which are algebraically independent over L. L is called k-unirational if L is k-isomorphic to a subfield of some k-rational field extension of k. It is easy to see that "k-rational" \Rightarrow "stably k-rational" \Rightarrow "k-unirational".

A classical question, the Lüroth problem by some people, asks whether a k-unirational field L is necessarily k-rational. For a survey of the question, see for example [10,6,17].

Noether's problem is a special case of the above Lüroth problem. Let k be a field and G be a finite group. Let G act on the rational function field $k(x_g : g \in G)$ by k-automorphisms defined by $h \cdot x_g = x_{hg}$ for any $g, h \in G$. Denote by k(G) the fixed subfield, i.e. $k(G) = k(x_g : g \in G)^G$. Noether's problem asks, under what situation, the field k(G) is k-rational.

Noether's problem is related to the inverse Galois problem, to the existence of generic G-Galois extensions over k, and to the existence of versal G-torsors over k-rational field extensions [16,13], [7, Section 33.1, page 86].

The first counter-example to Noether's problem was constructed by Swan: $\mathbb{Q}(C_p)$ is not \mathbb{Q} -rational if p = 47, 113 or 233, etc., where C_p is the cyclic group of order p. Noether's problem for finite abelian groups was studied extensively by Swan, Voskresenskii, Endo and Miyata, Lenstra, etc. For details, see Swan's survey paper [16].

In [14], Saltman defines $\operatorname{Br}_{\operatorname{nr},k}(k(G))$, the unramified Brauer group of k(G) over k. It is known that, if k(G) is stably k-rational, then the natural map $\operatorname{Br}(k) \to \operatorname{Br}_{\operatorname{nr},k}(k(G))$ is an isomorphism; in particular, if k is algebraically closed, then $\operatorname{Br}_{\operatorname{nr},k}(k(G)) = \{0\}$.

In this article, we concentrate on field extensions L over \mathbb{C} . Thus we will write $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G))$ for $\operatorname{Br}_{\operatorname{nr},\mathbb{C}}(\mathbb{C}(G))$, because there is no ambiguity of the ground field \mathbb{C} . As mentioned before, if $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)) \neq \{0\}$, then $\mathbb{C}(G)$ is not stably rational over \mathbb{C} .

Theorem 1.1. (See Saltman [14].) Let p be any prime number. Then there is a group G of order p^9 such that $\operatorname{Br}_{nr}(\mathbb{C}(G)) \neq \{0\}$. Consequently $\mathbb{C}(G)$ is not stably \mathbb{C} -rational.

A convenient formula for computing $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G))$ was found by Bogomolov [2, Theorem 3.1]. Using this formula, Bogomolov was able to reduce the group order from p^9 to p^6 .

Theorem 1.2. (See Bogomolov [2, Lemma 5.6].) Let p be any prime number. Then there is a group G of order p^6 such that $\operatorname{Br}_{\operatorname{nr}}(\mathbb{C}(G)) \neq \{0\}$.

Collict-Thélène and Ojanguren generalized the notion of the unramified Brauer group to the unramified cohomology group $H^d_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})$ where $d \geq 2$ [5]; also see Saltman's treatment [15]. Again, if $\mathbb{C}(G)$ is stably \mathbb{C} -rational, then $H^d_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) = \{0\}$ [5, Proposition 1.2]. Moreover, $H^2_{nr}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) \simeq \operatorname{Br}_{nr}(\mathbb{C}(G))$. Download English Version:

https://daneshyari.com/en/article/4583901

Download Persian Version:

https://daneshyari.com/article/4583901

Daneshyari.com