

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Blowing up finitely supported complete ideals in a regular local ring

ALGEBRA

William Heinzer^a, Youngsu Kim^b, Matthew Toeniskoetter^a

^a Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
^b Department of Mathematics, University of California, Riverside, Riverside, CA
92521, USA

ARTICLE INFO

Article history: Received 6 October 2014 Communicated by Steven Dale Cutkosky

MSC:

primary 13A30, 13C05 secondary 13E05, 13H05

Keywords: Rees valuation Finitely supported ideal Special *-simple ideal Complete ideal Base points Point basis Transform of an ideal Local quadratic transform

ABSTRACT

Let I be a finitely supported complete m-primary ideal of a regular local ring (R, \mathfrak{m}) . We consider singularities of the projective models Proj R[It] and Proj $\overline{R[It]}$ over Spec R, where $\overline{R[It]}$ denotes the integral closure of the Rees algebra R[It]. A theorem of Lipman implies that the ideal I has a unique factorization as a *-product of special *-simple complete ideals with possibly negative exponents for some of the factors. If $\operatorname{Proj} \overline{R[It]}$ is regular, we prove that $\operatorname{Proj} \overline{R[It]}$ is the regular model obtained by blowing up the finite set of base points of I. Extending work of Lipman and Huneke–Sally in dimension 2, we prove that every local ring S on $\operatorname{Proj} \overline{R[It]}$ that is a unique factorization domain is regular. Moreover, if dim $S \geq 2$ and Sdominates R, then S is an infinitely near point to R, that is, S is obtained from R by a finite sequence of local quadratic transforms.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: heinzer@purdue.edu (W. Heinzer), youngsu.kim@ucr.edu (Y. Kim), mtoenisk@purdue.edu (M. Toeniskoetter).

1. Introduction

Let (R, \mathfrak{m}) be a regular local ring of dimension at least 2. A regular local ring S that dominates R is *infinitely near to* R if dim $S \geq 2$ and S may be obtained from R by a finite sequence (possibly empty) of local quadratic transforms. An infinitely near point S to R is a *base point* of an ideal I of R if the transform I^S of I in S is a proper ideal of S. The set of base points of an ideal I of R is denoted $\mathcal{BP}(I)$, and the ideal I is said to be *finitely supported* if the set $\mathcal{BP}(I)$ is finite.

The infinitely near points to R form a partially ordered set with respect to domination. The regular local ring R is the unique minimal point with respect to this partial order. For an ideal I of R, the set $\mathcal{BP}(I)$ of base points of I is a partially ordered subset of the set of infinitely near points to R. If the set $\mathcal{BP}(I)$ is finite, we refer to the maximal regular local rings in $\mathcal{BP}(I)$ as *terminal base points* of I. If I is a finitely supported ideal, then results of Lipman [8, Prop. 1.21, Cor. 1.22] imply that dim $S = \dim R$ and S/I^S is Artinian for each base point S of I. In particular, the ideal I is m-primary.

Definition 1.1. Let (R, \mathfrak{m}) be a regular local ring and let I be a finitely supported \mathfrak{m} -primary ideal. Let $\Gamma := \mathcal{BP}(I)$ denote the finite set of base points of I. By successively blowing up the maximal ideals of the points in Γ we obtain a regular projective model¹ X_{Γ} over R and a projective morphism $X_{\Gamma} \to \operatorname{Spec} R$. We call X_{Γ} the saturated regular model associated to the ideal I, or more precisely, to the set $\Gamma = \mathcal{BP}(I)$.

The model X_{Γ} may be obtained by first blowing up the maximal ideal \mathfrak{m} of R to obtain the regular model $\operatorname{Proj} R[\mathfrak{m}t] = X_1$. Each infinitely near point S in $\Gamma = \mathcal{BP}(I)$, other than R, dominates a unique point on the model X_1 . The points in Γ in the first neighborhood of R are obtained from R by one local quadratic transform and are points on the model X_1 . Each infinitely near point S in $\Gamma \setminus \{R\}$ is either a point on the model X_1 or is an infinitely near point to a unique point S_1 , where S_1 is a point on the model X_1 . Associated to each infinitely near point $S_1 \in X_1$ such that dim $S_1 = \dim R$, there exists a unique coherent \mathcal{O}_{X_1} -ideal sheaf \mathcal{I} such that the stalk \mathcal{I}_{S_1} is the maximal ideal of \mathcal{O}_{X_1,S_1} and the stalk $\mathcal{I}_T = \mathcal{O}_{X_1,T}$ for each point T in $X_1 \setminus \{S_1\}$ [8, Lemma 2.3].

On X_1 , we blow up the ideal sheaf that is the product of the ideal sheaves that correspond to the points $S_1 \in \Gamma \cap X_1$ to obtain the regular model X_2 . There exist

¹ We are using the language of Section 17, Chapter VI of Zariski–Samuel [14]. Thus, for R a subring of a field K and A a finitely generated R-subalgebra of K, the affine model over R associated to A is the set of local rings A_P , where P varies over the set of prime ideals of A. A model M over R is a subset of the local subrings of K that contain R that has the properties: (i) M is a finite union of affine models over R, and (ii) each valuation ring of K that contains R dominates at most one of the local rings in M. This second condition is called *irredundance*. A model M over R is said to be *complete* if each valuation ring of K that contains R dominates at local R is said to be *projective* over R if there exists a finite set a_0, a_1, \ldots, a_n of nonzero elements of K such that M is the union of the affine models defined by the rings $A_i = R[\frac{a_i}{a_i}, \frac{a_1}{a_i}, \ldots, \frac{a_n}{a_i}]$, $i = 0, 1, \ldots, n$. The models we consider are either affine or projective models over a affine or projective schemes over Spec R.

Download English Version:

https://daneshyari.com/en/article/4583914

Download Persian Version:

https://daneshyari.com/article/4583914

Daneshyari.com