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The nilpotent cone of a reductive Lie algebra has a desingulari-
zation given by the cotangent bundle of the flag variety. 
Analogously, the nullcone of a Cartesian power of the algebra 
has a desingularization given by a vector bundle over the flag 
variety. As for the nullcone, the subvariety of elements whose 
components are in a same Borel subalgebra, has a desingu-
larization given by a vector bundle over the flag variety. In 
this note, we study geometrical properties of these varieties. 
For the study of the commuting variety, the analogous va-
riety to the flag variety is the closure in the Grassmannian 
of the set of Cartan subalgebras. So some properties of this 
variety are given. In particular, it is smooth in codimension 1. 
We introduce the generalized isospectral commuting varieties 
and give some properties. Furthermore, desingularizations of 
these varieties are given by fiber bundles over a desingulariza-
tion of the closure in the Grassmannian of the set of Cartan 
subalgebras contained in a given Borel subalgebra.
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1. Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive 
Lie algebra of finite dimension, � is its rank, dimg = � + 2n and G is its adjoint group. 
As usual, b denotes a Borel subalgebra of g, h a Cartan subalgebra of g, contained in b, 
and B the normalizer of b in G.

1.1. Main results

Let B(k) be the subset of elements (x1, . . . , xk) of gk such that x1, . . . , xk are in a same 
Borel subalgebra of g. This subset of gk is closed and contains two interesting subsets: 
the nullcone of gk denoted by N(k) and the generalized commuting variety of g that is 
the closure in gk of the subset of elements (x1, . . . , xk) such that x1, . . . , xk are in a same 
Cartan subalgebra of g. We denote it by C(k). According to [16, Ch. 2, §1, Theorem], 
for (x1, . . . , xk) in B(k), (x1, . . . , xk) is in N(k) if and only if x1, . . . , xk are nilpotent. 
According to a Richardson Theorem [18], C(2) is the commuting variety of g.

There is a natural projective morphism G×B bk B(k) . For k = 1, this mor-
phism is not birational but for k ≥ 2, it is birational (see Lemma 2.2 and Lemma 2.4). 
Furthermore, denoting by X the subvariety of elements (x, y) of g × h such that y is in 
the closure of the orbit of x under G, the morphism

G× b X , (g, x) �−→ (g.x, x)

with x the projection of x onto h defines through the quotient a projective and birational 
morphism G×B b X and g is the categorical quotient of X under the action of 
W (R) on the factor h, with W (R) the Weyl group of g. For k ≥ 2, the inverse image 
of B(k) by the canonical projection from Xk to gk is not irreducible but the canonical 
action of W (R)k on Xk induces a simply transitive action on the set of its irreducible 
components. Setting:

B(k)
x := {((g(x1), x1), . . . , (g(xk), xk)) | (g, x1, . . . , xk) ∈ G× bk},
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