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For the study of the commuting variety, the analogous va-
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these varieties are given by fiber bundles over a desingulariza-
tion of the closure in the Grassmannian of the set of Cartan
subalgebras contained in a given Borel subalgebra.
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1. Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive
Lie algebra of finite dimension, ¢ is its rank, dimg = ¢ + 2n and G is its adjoint group.
As usual, b denotes a Borel subalgebra of g, h a Cartan subalgebra of g, contained in b,
and B the normalizer of b in G.

1.1. Main results

Let B*) be the subset of elements (w1,...,7x) of g¥ such that z1, ...,z are in a same
Borel subalgebra of g. This subset of g* is closed and contains two interesting subsets:
the nullcone of g* denoted by N*) and the generalized commuting variety of g that is

the closure in gk of the subset of elements (z1,...,zx) such that z1, ...,z are in a same
Cartan subalgebra of g. We denote it by €*). According to [16, Ch. 2, §1, Theorem],
for (z1,...,zx) in BE) (xq,...,2;) is in N®) if and only if x1,...,2; are nilpotent.

According to a Richardson Theorem [18], € is the commuting variety of g.

There is a natural projective morphism G x g b¥ —— B(*) _ For k = 1, this mor-
phism is not birational but for k > 2, it is birational (see Lemma 2.2 and Lemma 2.4).
Furthermore, denoting by X the subvariety of elements (x,y) of g x h such that y is in
the closure of the orbit of  under G, the morphism

Gxb——X, (g,2) — (9.2, T)

with T the projection of x onto h defines through the quotient a projective and birational
morphism G xgpb —— X and g is the categorical quotient of X under the action of
W(R) on the factor b, with W(R) the Weyl group of g. For k > 2, the inverse image
of B(¥) by the canonical projection from X* to g is not irreducible but the canonical
action of W(R)* on X* induces a simply transitive action on the set of its irreducible
components. Setting:

B)(ck) = {((g($1),l‘_1),. ) (g(xk)vx_k)) | (g’xl’ - '7xk) € G x bk}’
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