Journal of Algebra 451 (2016) 115–144

On the decomposition matrix of the partition algebra in positive characteristic

ALGEBRA

Oliver King

School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

ARTICLE INFO

Article history: Received 18 November 2014 Available online 22 December 2015 Communicated by Volodymyr Mazorchuk

Keywords: Representation theory Modular representation theory Diagram algebra Partition algebra

ABSTRACT

We examine the structure of the partition algebra $P_n(\delta)$ over a field k of characteristic p > 0. In particular, we describe the decomposition matrix of $P_n(\delta)$ when n < p and $\delta \neq 0$, and when n = p and $\delta = p - 1$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The partition algebra was originally defined by Martin in [12] over \mathbb{C} as a generalisation of the Temperley–Lieb algebra for δ -state *n*-site Potts models in statistical mechanics, and independently by Jones [11]. Although this interpretation requires δ to be integral, it is possible to define the algebra for any δ . It was shown in [18] that the partition algebra $P_n^{\mathbb{F}}(\delta)$ over an arbitrary field \mathbb{F} is a cellular algebra, with cell modules $\Delta_{\lambda}(n)$ indexed by partitions λ of size at most *n*. If we suppose $\delta \neq 0$, then in characteristic zero these partitions also label a complete set of non-isomorphic simple modules, given by the heads of the corresponding cell modules. In positive characteristic the simple modules

E-mail address: O.H.King@leeds.ac.uk.

are indexed by the subset of *p*-regular partitions (again under the assumption $\delta \neq 0$). It is natural to then ask how the simple modules arise as composition factors of the cell modules. In the case char $\mathbb{F} = 0$ this has been entirely resolved by Martin [13] and Doran and Wales [3], however there has previously been little investigation into the positive characteristic case.

Martin provides in [13] a condition on λ , μ and δ for when there is a homomorphism in characteristic zero between cell modules labelled by λ and μ , provided $\delta \neq 0$. This was strengthened in [3] to allow for $\delta = 0$. In [1] this condition was reformulated in terms of the reflection geometry of a Weyl group W under a δ -shifted action. By then considering the action of the corresponding affine Weyl group W^p , a description of the blocks of the partition algebra in positive characteristic was given.

In this paper we continue to investigate the representations of $P_n^{\mathbb{F}}(\delta)$ when char $\mathbb{F} = p > 2$. We show that by placing certain restrictions on the values of n, δ and p we can in these cases compute the decomposition matrix of $P_n^{\mathbb{F}}(\delta)$.

In Section 2 we set up the notation and definitions that will be used throughout the paper, and review some previous results. In Section 3 we recall some results regarding the representation theory of the symmetric group, and the abacus method of representing partitions. Section 4 introduces the partition algebra and recalls the block structure in characteristic zero and in prime characteristic. In Section 5 we obtain the decomposition matrix of the partition algebra in positive characteristic. We separate this last section into three subsections, each dealing with a particular set of values for n and δ .

When writing this paper, it was brought to the author's attention that the decomposition numbers of the partition algebra $P_n^k(\delta)$ over a field k of characteristic p > n were obtained independently, and by different methods, by A. Shalile [17].

1.1. Notation

Throughout this paper, we fix a prime number p > 2 and a *p*-modular system (K, R, k). That is, R is a discrete valuation ring with maximal ideal $P = (\pi)$, field of fractions Frac(R) = K of characteristic 0, and residue field k = R/P of characteristic *p*. We will use \mathbb{F} to denote either *K* or *k*.

We also fix a parameter $\delta \in R$ and assume that its image in k is non-zero (so in particular, $\delta \neq 0 \in R$). We will use δ to denote both the element in R and its projection in k.

2. Preliminaries

Suppose A is an R-algebra, free and of finite rank as an R-module. We can extend scalars to produce the K-algebra $A_K = K \otimes_R A$ and the k-algebra $A_k = k \otimes_R A$. Given an A-module M, we can then also consider the A_K -module $M_K = K \otimes_R M$ and the A_k -module $M_k = k \otimes_R M$.

Download English Version:

https://daneshyari.com/en/article/4583925

Download Persian Version:

https://daneshyari.com/article/4583925

Daneshyari.com