

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On totally decomposable algebras with involution in characteristic two

ALGEBRA

M.G. Mahmoudi^a, A.-H. Nokhodkar^{b,*}

 ^a Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155-9415, Tehran, Iran
^b Department of Pure Mathematics, Faculty of Science, University of Kashan,

P.O. Box 87317-53153, Kashan, Iran

A R T I C L E I N F O

Article history: Received 11 March 2015 Available online 22 December 2015 Communicated by Louis Rowen

MSC: 16W10 16W25 16K20 11E39

Keywords: Central simple algebra Involution Quaternion algebra Frobenius algebra Bilinear and quadratic form Pfister form

АВЅТ КАСТ

A necessary and sufficient condition for a central simple algebra with involution over a field of characteristic two to be decomposable as a tensor product of quaternion algebras with involution, in terms of its Frobenius subalgebras, is given. It is also proved that a bilinear Pfister form, recently introduced by A. Dolphin, can classify totally decomposable central simple algebras of orthogonal type.

© 2015 Elsevier Inc. All rights reserved.

 $[\]ast\,$ Corresponding author.

E-mail addresses: mmahmoudi@sharif.ir (M.G. Mahmoudi), anokhodkar@yahoo.com (A.-H. Nokhodkar).

1. Introduction

An old result due to A.A. Albert states that every central simple algebra A of degree 4 which carries an involution of the first kind can be decomposed as a tensor product of two quaternion algebras (see [18, §16]). This result is no longer valid if A is of degree 8 by the examples given in [1] over fields of characteristic different from 2 and in [26] over fields of characteristic 2. In [1], it was also shown that if A is of degree 2^n over a field of characteristic different from 2, then A decomposes into a tensor product of quaternion algebras if and only if there exists a finite square-central subset of A (called a *q*-generating set) which satisfies some commuting properties. Over a field of particular cohomological dimension, it is known that central simple algebras which carry an involution of the first kind can be decomposed as a tensor product of quaternion algebras (see [15], and [4] for a characteristic 2 counterpart). In [3], a similar result was proved under the hypothesis that the base field has the *u*-invariant less than or equal to 8.

A closely related problem is to determine the conditions under which a central simple algebra with involution (A, σ) is totally decomposable (i.e., (A, σ) decomposes as a tensor product of σ -invariant quaternion algebras). In [25], it was shown that if A is of degree 4 over a field of characteristic different from 2 and σ is of symplectic type, then A can be decomposed as a tensor product of two σ -invariant quaternion algebras. A proof of this result in characteristic 2 was given in [27], also a characteristic independent proof of this result and a criterion for decomposability in the case where σ is orthogonal can be found in [19]. A similar criterion for the unitary case of degree 4 and of arbitrary characteristic was derived in [16]. A cohomological invariant to detect decomposability for degree 8 algebras with symplectic involution over a field of characteristic different from 2 can be found in [12]. For the case of degree 8 algebras with orthogonal involution (A, σ) over a field of characteristic different from 2, a criterion for decomposability in terms of the Clifford algebra of (A, σ) can be found in [18, (42.11)], see also [28, (3.10)]. If A is split and of degree 2^n over a field of characteristic different from 2, by [5] an involution σ of orthogonal type on A is totally decomposable if and only if it is adjoint to a bilinear Pfister form (see [21] and [10] for a characteristic 2 counterpart of this result).

Another relevant problem is to find invariants which classify involutions on a given central simple algebra up to conjugation. Orthogonal involutions of degree ≤ 4 in characteristic different from 2 can be classified by their Clifford algebras [18, §15], [20, §2]. A degree 4 central simple algebra with symplectic involution (A, σ) can be classified by a 3-fold Pfister form or an Albert form associated to σ , see [17] and [18, §16].

In this work we study the problems of decomposition and classification of central simple algebras with involution in the case of characteristic 2. In 4.6, we show that a central simple algebra with involution (A, σ) over a field of characteristic 2 is totally decomposable if and only if there exists a symmetric and self-centralizing subalgebra $S = \Phi(A, \sigma)$ of A such that (i) $x^2 \in F$ for every $x \in S$ and (ii) $\dim_F S = 2^{r_F(S)}$, where $r_F(S)$ is the minimum rank of S. In the case where (A, σ) is totally decomposable central simple algebra with involution of orthogonal type we show that the aforementioned subalgebra

Download English Version:

https://daneshyari.com/en/article/4583928

Download Persian Version:

https://daneshyari.com/article/4583928

Daneshyari.com