Journal of Algebra 451 (2016) 577-582

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Corrigendum

Corrigendum to "Dirac cohomology and translation functors" [J. Algebra 375 (2013) 328–336]

ALGEBRA

S. Mehdi^{a,*}, P. Pandžić^b

 ^a Institut Elie Cartan de Lorraine, CNRS – UMR 7502, Université de Lorraine, France
^b Department of Mathematics, University of Zagreb, Croatia

ARTICLE INFO

Article history: Received 17 July 2014 Available online 28 January 2016 Communicated by Shrawan Kumar

MSC: primary 22E47 secondary 22E46

Keywords: (\mathfrak{g}, K) -module Dirac operator Dirac cohomology Translation functor

ABSTRACT

The statements of Theorem 1.3, Lemma 3.2 and Proposition 5.2 in [4] are incorrect. We give counterexamples to these statements and we offer a replacement for Theorem 1.3, under stronger assumptions.

@ 2012 Elsevier Inc. All rights reserved.

We first give a counterexample to Theorem 1.3 in [4]. We thank the referee for suggesting this counterexample.

Let G be the Hermitian group SU(2, 1) with Cartan involution θ equal to the conjugate transpose inverse. The complexified Lie algebra of G is $\mathfrak{g} = \mathfrak{sl}(3, \mathbb{C})$, the maximal compact subgroup corresponding to θ is $K = S(U(2) \times U(1))$ and the corresponding Cartan decomposition of \mathfrak{g} is $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. We fix a compact Cartan subalgebra \mathfrak{h} of \mathfrak{g} to be

* Corresponding author.

DOI of original article: http://dx.doi.org/10.1016/j.jalgebra.2012.11.022.

E-mail addresses: salah.mehdi@univ-lorraine.fr (S. Mehdi), pandzic@math.hr (P. Pandžić).

the space of diagonal matrices in \mathfrak{g} . The set Δ of \mathfrak{h} -roots in \mathfrak{g} splits into subsets Δ_c of compact roots and Δ_n of non-compact roots.

Let \mathfrak{b} be a θ -stable Borel subalgebra of \mathfrak{g} not containing either of the two abelian K-invariant subspaces \mathfrak{p}^{\pm} of \mathfrak{p} . Let $\Delta^+ \subset \Delta$ be the positive root system corresponding to \mathfrak{b} and ρ the half sum of elements of Δ^+ . The Harish-Chandra module of the non-holomorphic discrete series representation of G with Harish-Chandra parameter ρ is the cohomologically induced module $A_{\mathfrak{b}}(0)$. The Dirac cohomology $H_D(A_{\mathfrak{b}}(0))$ equals the irreducible finite-dimensional \widetilde{K} -module with highest weight ρ_n , where ρ_n is the half sum of elements of $\Delta^+ \cap \Delta_n$, see Proposition 5.4 in [2].

On the other hand, by Proposition 11.180 in [3], the limit of discrete series $A_{\mathfrak{b}}(-\rho)$ with infinitesimal character equal to 0 is a non-zero irreducible unitary (\mathfrak{g}, K) -module. The module $A_{\mathfrak{b}}(-\rho)$ can be obtained by translating $A_{\mathfrak{b}}(0)$ to infinitesimal character 0. It has trivial Dirac cohomology since no $W(\mathfrak{g}, \mathfrak{h})$ -translate of the infinitesimal character 0 can be \mathfrak{k} -regular. Back to Theorem 1.3 in [4], we take $\lambda = 0, \nu = \rho, X_0 = A_{\mathfrak{b}}(-\rho), F_{\rho}$ the irreducible representation of G with highest weight ρ and $X_{\rho} = A_{\mathfrak{b}}(0)$. Since X_0 is a translate of X_{ρ} , it follows that X_{ρ} embeds into $X_0 \otimes F_{\rho}$ (see Proposition 7.143 in [3]). Since $H_D(X_{\rho}) \neq 0$ but $H_D(X_0) = 0$, we see that Theorem 1.3 of [4] does not hold.

Next we provide an example showing that statements of Lemma 3.2 and Proposition 5.2 are not correct. Let X_{λ} be a lowest weight discrete series module for $(\mathfrak{g}, K) = (\mathfrak{sl}(2, \mathbb{C}), SO(2))$. The K-types of X_{λ} are spanned by the weight vectors $x_{\lambda+1}, x_{\lambda+3}, \ldots$, where the subscripts denote the weights. Let F_{ν} be the finite-dimensional module with highest weight ν , spanned by the weight vectors $f_{-\nu}, f_{-\nu+2}, \ldots, f_{\nu}$. Recall that the spin module is spanned by weight vectors $s_{\pm 1}$. Then one checks that

- Ker D_1^2 = Ker $D_1 = x_{\lambda+1} \otimes F_{\nu} \otimes s_{-1}$;
- Ker $D_2 = X_\lambda \otimes f_{-\nu} \otimes s_{-1} \oplus X_\lambda \otimes f_\nu \otimes s_1;$
- Ker $D_1 \cap$ Ker $D_2 = \mathbb{C}x_{\lambda+1} \otimes f_{-\nu} \otimes s_{-1}$.

(Ker D_1^2 = Ker D_1 follows from unitarity of X_{λ} , or can be obtained by a direct calculation.) Assuming that $\lambda > \nu$, the translates of X_{λ} by F_{ν} are the lowest weight discrete series modules $X_{\lambda-\nu}$ and $X_{\lambda+\nu}$. One checks that $\varphi(\text{Ker } D_{X_{\lambda-\nu}}) \subseteq \text{Ker } D_1 \cap \text{Ker } D_2$, but

$$\varphi(\operatorname{Ker} D_{X_{\lambda+\nu}}) \nsubseteq \operatorname{Ker} D_1 \cap \operatorname{Ker} D_2.$$

This shows that Lemma 3.2 does not hold for $X_{\lambda+\nu}$. Moreover, $\varphi(\operatorname{Ker} D_{X_{\lambda+\nu}}) \not\subseteq \beta(\operatorname{Ker}(D_{X_{\lambda}}) \otimes \operatorname{Ker}(D_{F_{\nu}}) \otimes S^{\star})$, so Proposition 5.2 also fails.

The mistake in the proof of Lemma 3.2 was the claim that $D_1 + D_2 = 0$ on $\varphi(\operatorname{Ker} D_{X_{\lambda+\nu}})$ implies $D_1^2 = D_2^2$ on $\varphi(\operatorname{Ker} D_{X_{\lambda+\nu}})$. Namely, $\varphi(\operatorname{Ker} D_{X_{\lambda+\nu}})$ need not be invariant under D_1 or D_2 .

Note that in the above example Lemma 3.2 fails for one of the translates of X_{λ} , but it holds for the other translate. In the following, we show that a similar property holds in a much more general setting. Download English Version:

https://daneshyari.com/en/article/4583941

Download Persian Version:

https://daneshyari.com/article/4583941

Daneshyari.com