Journal of Algebra 450 (2016) 204-241

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Grothendieck categories of enriched functors

ALGEBRA

Hassan Al Hwaeer^{a,1}, Grigory Garkusha^{b,*}

 ^a Department of Mathematics, University of Kufa, Kufa, P.O. Box (21), Najaf Governarate, Iraq
^b Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom

A R T I C L E I N F O

Article history: Received 23 September 2014 Available online 6 December 2015 Communicated by Luchezar L. Avramov

MSC: 18E15 18E30 18G55

Keywords: Grothendieck categories Enriched categories Model categories

ABSTRACT

It is shown that the category of enriched functors $[\mathscr{C}, \mathscr{V}]$ is Grothendieck whenever $\mathscr V$ is a closed symmetric monoidal Grothendieck category and \mathscr{C} is a category enriched over \mathscr{V} . Localizations in $[\mathscr{C}, \mathscr{V}]$ associated to collections of objects of \mathscr{C} are studied. Also, the category of chain complexes of generalized modules $Ch(\mathscr{C}_R)$ is shown to be identified with the Grothendieck category of enriched functors $[\mod R, \operatorname{Ch}(\operatorname{Mod} R)]$ over a commutative ring R, where the category of finitely presented R-modules mod R is enriched over the closed symmetric monoidal Grothendieck category Ch(Mod R) as complexes concentrated in zeroth degree. As an application, it is proved that $Ch(\mathscr{C}_R)$ is a closed symmetric monoidal Grothendieck model category with explicit formulas for tensor product and internal Hom-objects. Furthermore, the class of unital algebraic almost stable homotopy categories generalizing unital algebraic stable homotopy categories of Hovey–Palmieri–Strickland [14] is introduced. It is shown that the derived category of generalized modules $\mathscr{D}(\mathscr{C}_R)$ over commutative rings is a unital algebraic almost stable homotopy category which is not an algebraic stable homotopy category.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: hassan1167@yahoo.com (H. Al Hwaeer), g.garkusha@swansea.ac.uk (G. Garkusha).

¹ The first author was supported by the Ministry of Higher Education and Mathematics Department of Kufa University, Iraq.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.09.052} 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.09.052} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.09.052} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.09.052} 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.09.052$ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.0016 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.0016 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.0016 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.0016 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2015.0016 0021

1. Introduction

In the present paper we study categories of enriched functors

$$[\mathscr{C},\mathscr{V}],$$

where \mathscr{V} is a closed symmetric monoidal Grothendieck category and \mathscr{C} is a category enriched over \mathscr{V} (i.e. a \mathscr{V} -category). The main result here states that the category $[\mathscr{C}, \mathscr{V}]$ is Grothendieck with an explicit collection of generators. Namely, the following theorem is true.

Theorem. Let \mathscr{V} be a closed symmetric monoidal Grothendieck category with a set of generators $\{g_i\}_I$. If \mathscr{C} is a small \mathscr{V} -category, then the category of enriched functors $[\mathscr{C}, \mathscr{V}]$ is a Grothendieck \mathscr{V} -category with the set of generators $\{\mathscr{V}(c, -) \oslash g_i \mid c \in Ob \mathscr{C}, i \in I\}$. Moreover, if \mathscr{C} is a small symmetric monoidal \mathscr{V} -category, then $[\mathscr{C}, \mathscr{V}]$ is closed symmetric monoidal with explicit formulas for monoidal product and internal Hom-object.

Taking into account this theorem, we refer to $[\mathscr{C}, \mathscr{V}]$ as a *Grothendieck category of* enriched functors. The usual Grothendieck category of additive functors

$$(\mathscr{B}, Ab)$$

from a pre-additive category \mathscr{B} to abelian groups Ab is recovered from the preceding theorem in the case when $\mathscr{V} = Ab$ (\mathscr{B} is a \mathscr{V} -category). Further examples on how the category $[\mathscr{C}, \mathscr{V}]$ recovers some Grothendieck categories are given in Section 4.

The following result is an extension to enriched categories of similar results of [6,9].

Theorem. Suppose \mathscr{V} is a closed symmetric monoidal Grothendieck category. Let \mathscr{C} be a \mathscr{V} -category and let \mathscr{P} consist of a collection of objects of \mathscr{C} . Let $\mathscr{S}_{\mathscr{P}} = \{G \in [\mathscr{C}, \mathscr{V}] \mid G(p) = 0 \text{ for all } p \in \mathscr{P}\}$. Then $\mathscr{S}_{\mathscr{P}}$ is a localizing subcategory of $[\mathscr{C}, \mathscr{V}]$ and $[\mathscr{P}, \mathscr{V}]$ is equivalent to the quotient category $[\mathscr{C}, \mathscr{V}]/\mathscr{S}_{\mathscr{P}}$.

We apply Grothendieck categories of enriched functors to study homological algebra for generalized modules. The category of generalized modules

$$\mathscr{C}_R = (\operatorname{mod} R, \operatorname{Ab})$$

consists of the additive functors from the category of finitely presented R-modules, mod R, to the category of abelian groups, Ab. Its morphisms are the natural transformations of functors. It is called the category of generalized R-modules for the reason that there is a fully faithful, right exact functor

$$M \mapsto - \otimes_R M$$

from the category of all R-modules to \mathscr{C}_R .

Download English Version:

https://daneshyari.com/en/article/4583950

Download Persian Version:

https://daneshyari.com/article/4583950

Daneshyari.com