Decomposing modular tensor products, and periodicity of 'Jordan partitions'

S.P. Glasby ${ }^{\mathrm{a}, 1}$, Cheryl E. Praeger ${ }^{\mathrm{a}, 2}$, Binzhou Xia ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Centre for Mathematics of Symmetry and Computation, University of Western
Australia, 35 Stirling Highway, Crawley 6009, Australia
b Beijing International Center for Mathematical Research, Peking University, Beijing 100871, People's Republic of China

A R T I C L E I N F O

Article history:

Received 21 February 2015
Available online 6 December 2015
Communicated by Martin Liebeck

MSC:

15A69
15A21
13 C 05

Keywords:
Tensor product
Jordan blocks
Jordan canonical form
Jordan partition
Green ring

A B S TRACT

Let J_{r} denote an $r \times r$ matrix with minimal and characteristic polynomials $(t-1)^{r}$. Suppose $r \leqslant s$. It is not hard to show that the Jordan canonical form of $J_{r} \otimes J_{s}$ is similar to $J_{\lambda_{1}} \oplus \cdots \oplus J_{\lambda_{r}}$ where $\lambda_{1} \geqslant \cdots \geqslant \lambda_{r}>0$ and $\sum_{i=1}^{r} \lambda_{i}=r s$. The partition $\lambda(r, s, p):=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of $r s$, which depends only on r, s and the characteristic $p:=\operatorname{char}(F)$, has many applications including the study of algebraic groups. We prove new periodicity and duality results for $\lambda(r, s, p)$ that depend on the smallest p-power exceeding r. This generalizes results of J.A. Green, B. Srinivasan, and others which depend on the smallest p-power exceeding the (potentially large) integer s. It also implies that for fixed r we can construct a finite table allowing the computation of $\lambda(r, s, p)$ for all s and p, with $s \geqslant r$ and p prime.
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Consider a matrix whose minimal and characteristic polynomials equal $(t-1)^{r}$. To be explicit, take the $r \times r$ matrix J_{r} with 1 s in positions (i, i) for $1 \leqslant i \leqslant r$, and $(i, i+1)$ for $1 \leqslant i<r$, and zeros elsewhere. Suppose $1 \leqslant r \leqslant s$. Then the Jordan canonical form of $J_{r} \otimes J_{s}$ is a direct sum $J_{\lambda_{1}} \oplus \cdots \oplus J_{\lambda_{r}}$, with precisely r nonempty blocks, see Lemma 9(a). This decomposition depends on the characteristic p of the underlying field ${ }^{3} F$, and it determines a partition $\lambda(r, s, p)=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of $r s$ since $J_{r} \otimes J_{s}$ is an $r s \times r s$ matrix. We will assume that $\lambda_{1} \geqslant \cdots \geqslant \lambda_{r}>0$. The determination of this 'Jordan partition' ${ }^{4}$ has applications to many significant problems. The representation theory of algebraic groups is governed by the behaviour of the unipotent elements, and indeed properties of $\lambda(r, s, p)$ are particularly useful (when $p>0$) for the study of exceptional algebraic groups, see [14, 12]. More generally, Lindsey [13, Theorem 1] gives a useful (though somewhat technical) lower bound on the degree of the minimal faithful representation in characteristic p for certain groups with a prescribed Sylow p-subgroup structure. Lindsey's result, in turn, may be applied to the study of primitive permutation groups of p-power degree, see [19].

The most direct application, and the oldest, is to the study of modular representations of finite cyclic p-groups. Given two indecomposable modules V_{r} and V_{s} of a cyclic group G of order p^{n}, the module $V_{r} \otimes V_{s}$ is, by the Krull-Schmidt theorem, a sum of indecomposable modules $V_{\lambda_{1}} \oplus \cdots \oplus V_{\lambda_{r}}$. Thus when $p>0$, the partition $\lambda(r, s, p)$ arises naturally in this context too. The connection with matrices is straightforward: $G=\langle g\rangle$ has precisely p^{n} pairwise nonisomorphic indecomposable modules $V_{1}, \ldots, V_{p^{n}}$ which correspond to the matrix representations $G \rightarrow \mathrm{GL}\left(r, \mathbb{F}_{p}\right): g \mapsto J_{r}$ where $1 \leqslant r \leqslant p^{n}$.

Definition 1. The following terminology will be used as convenient abbreviations.
(a) For integers r, s with $1 \leqslant r \leqslant s$, the standard partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of $r s$ is the partition with $\lambda_{i}=r+s-2 i+1$ for $1 \leqslant i \leqslant r$, i.e. $(s+r-1, \ldots, s-r+1)$.
(b) Call $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ the (r-) uniform partition of $r s$ if $\lambda_{i}=s$, for $1 \leqslant i \leqslant r$.
(c) The vector $\varepsilon(r, s, p)=\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ with $\varepsilon_{i}=\lambda_{i}-s$, which measures the deviation of $\lambda(r, s, p)=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ from the uniform vector, is called the deviation vector.
(d) The negative reverse of $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}\right)$ is $\overline{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}\right)}:=\left(-\varepsilon_{r}, \ldots,-\varepsilon_{2},-\varepsilon_{1}\right)$.
(e) The k-multiple of $\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ is the vector $\left(k \lambda_{1}, \ldots, k \lambda_{1}, \ldots, k \lambda_{r}, \ldots, k \lambda_{r}\right)$ of length $k r$ where the size, and multiplicity, of each part is multiplied by k.

In characteristic zero, the partition $\lambda(r, s, 0)$ was shown to be the standard partition independently by Aitken (1934), Roth (1934), and Littlewood (1936); for more background and references see [18, p. 416]. The change-of-basis matrix exhibiting the Jordan canonical form of $J_{r} \otimes J_{s}$ may be chosen to have rational entries, and so in 'large'

[^1]
https://daneshyari.com/en/article/4583963

Download Persian Version:

https://daneshyari.com/article/4583963

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: GlasbyS@gmail.com (S.P. Glasby), Cheryl.Praeger@uwa.edu.au (C.E. Praeger), binzhouxia@pku.edu.cn (B. Xia).

 URLs: http://www.maths.uwa.edu.au/~glasby/ (S.P. Glasby), http://www.maths.uwa.edu.au/~praeger (C.E. Praeger).
 1 Also affiliated with Department of Mathematics, University of Canberra, Australia.
 2 Also affiliated with King Abdulaziz University, Jeddah, Saudi Arabia.

[^1]: ${ }^{3}$ We may assume that $F=\mathbb{F}_{p}$ or \mathbb{Q} as the Jordan form of $J_{r} \otimes J_{s}$ is invariant under field extensions.
 ${ }^{4}$ This phrase was used by Dmitri Panyushev in the review MR2728146, but it is not used commonly.

