#### Journal of Algebra 450 (2016) 570-587



Contents lists available at ScienceDirect

### Journal of Algebra

www.elsevier.com/locate/jalgebra

# Decomposing modular tensor products, and periodicity of 'Jordan partitions'



ALGEBRA

S.P. Glasby<sup>a,1</sup>, Cheryl E. Praeger<sup>a,2</sup>, Binzhou Xia<sup>b,\*</sup>

 <sup>a</sup> Centre for Mathematics of Symmetry and Computation, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
<sup>b</sup> Beijing International Center for Mathematical Research, Peking University, Beijing 100871, People's Republic of China

#### ARTICLE INFO

Article history: Received 21 February 2015 Available online 6 December 2015 Communicated by Martin Liebeck

MSC: 15A69 15A21 13C05

Keywords: Tensor product Jordan blocks Jordan canonical form Jordan partition Green ring

#### ABSTRACT

Let  $J_r$  denote an  $r \times r$  matrix with minimal and characteristic polynomials  $(t-1)^r$ . Suppose  $r \leq s$ . It is not hard to show that the Jordan canonical form of  $J_r \otimes J_s$  is similar to  $J_{\lambda_1} \oplus \cdots \oplus J_{\lambda_r}$  where  $\lambda_1 \geq \cdots \geq \lambda_r > 0$  and  $\sum_{i=1}^r \lambda_i = rs$ . The partition  $\lambda(r, s, p) := (\lambda_1, \dots, \lambda_r)$  of rs, which depends only on r, s and the characteristic  $p := \operatorname{char}(F)$ , has many applications including the study of algebraic groups. We prove new periodicity and duality results for  $\lambda(r, s, p)$  that depend on the smallest *p*-power exceeding *r*. This generalizes results of J.A. Green, B. Srinivasan, and others which depend on the smallest *p*-power exceeding the (potentially large) integer *s*. It also implies that for fixed *r* we can construct a finite table allowing the computation of  $\lambda(r, s, p)$  for all *s* and *p*, with  $s \geq r$  and *p* prime.

© 2015 Elsevier Inc. All rights reserved.

\* Corresponding author.

http://dx.doi.org/10.1016/j.jalgebra.2015.11.025 0021-8693/© 2015 Elsevier Inc. All rights reserved.

*E-mail addresses:* GlasbyS@gmail.com (S.P. Glasby), Cheryl.Praeger@uwa.edu.au (C.E. Praeger), binzhouxia@pku.edu.cn (B. Xia).

URLs: http://www.maths.uwa.edu.au/~glasby/ (S.P. Glasby), http://www.maths.uwa.edu.au/~praeger (C.E. Praeger).

http://www.maths.uwa.edu.au/~praeger (C.E. Praeger).

<sup>&</sup>lt;sup>1</sup> Also affiliated with Department of Mathematics, University of Canberra, Australia.

<sup>&</sup>lt;sup>2</sup> Also affiliated with King Abdulaziz University, Jeddah, Saudi Arabia.

#### 1. Introduction

Consider a matrix whose minimal and characteristic polynomials equal  $(t-1)^r$ . To be explicit, take the  $r \times r$  matrix  $J_r$  with 1s in positions (i, i) for  $1 \leq i \leq r$ , and (i, i+1) for  $1 \leq i < r$ , and zeros elsewhere. Suppose  $1 \leq r \leq s$ . Then the Jordan canonical form of  $J_r \otimes J_s$  is a direct sum  $J_{\lambda_1} \oplus \cdots \oplus J_{\lambda_r}$ , with precisely r nonempty blocks, see Lemma 9(a). This decomposition depends on the characteristic p of the underlying field<sup>3</sup> F, and it determines a partition  $\lambda(r, s, p) = (\lambda_1, \ldots, \lambda_r)$  of rs since  $J_r \otimes J_s$  is an  $rs \times rs$  matrix. We will assume that  $\lambda_1 \geq \cdots \geq \lambda_r > 0$ . The determination of this 'Jordan partition'<sup>4</sup> has applications to many significant problems. The representation theory of algebraic groups is governed by the behaviour of the unipotent elements, and indeed properties of  $\lambda(r, s, p)$ are particularly useful (when p > 0) for the study of exceptional algebraic groups, see [14, 12]. More generally, Lindsey [13, Theorem 1] gives a useful (though somewhat technical) lower bound on the degree of the minimal faithful representation in characteristic p for certain groups with a prescribed Sylow p-subgroup structure. Lindsey's result, in turn, may be applied to the study of primitive permutation groups of p-power degree, see [19].

The most direct application, and the oldest, is to the study of modular representations of finite cyclic *p*-groups. Given two indecomposable modules  $V_r$  and  $V_s$  of a cyclic group G of order  $p^n$ , the module  $V_r \otimes V_s$  is, by the Krull–Schmidt theorem, a sum of indecomposable modules  $V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_r}$ . Thus when p > 0, the partition  $\lambda(r, s, p)$  arises naturally in this context too. The connection with matrices is straightforward:  $G = \langle g \rangle$  has precisely  $p^n$  pairwise nonisomorphic indecomposable modules  $V_1, \ldots, V_{p^n}$  which correspond to the matrix representations  $G \to \operatorname{GL}(r, \mathbb{F}_p) \colon g \mapsto J_r$  where  $1 \leq r \leq p^n$ .

Definition 1. The following terminology will be used as convenient abbreviations.

- (a) For integers r, s with  $1 \leq r \leq s$ , the **standard partition**  $\lambda = (\lambda_1, \dots, \lambda_r)$  of rs is the partition with  $\lambda_i = r + s 2i + 1$  for  $1 \leq i \leq r$ , i.e.  $(s + r 1, \dots, s r + 1)$ .
- (b) Call  $\lambda = (\lambda_1, \dots, \lambda_r)$  the (*r*-)uniform partition of *rs* if  $\lambda_i = s$ , for  $1 \leq i \leq r$ .
- (c) The vector  $\varepsilon(r, s, p) = (\varepsilon_1, \dots, \varepsilon_r)$  with  $\varepsilon_i = \lambda_i s$ , which measures the deviation of  $\lambda(r, s, p) = (\lambda_1, \dots, \lambda_r)$  from the uniform vector, is called the **deviation vector**.
- (d) The **negative reverse** of  $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_r)$  is  $\overline{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_r)} := (-\varepsilon_r, \ldots, -\varepsilon_2, -\varepsilon_1)$ .
- (e) The *k*-multiple of  $(\lambda_1, \ldots, \lambda_r)$  is the vector  $(k\lambda_1, \ldots, k\lambda_1, \ldots, k\lambda_r, \ldots, k\lambda_r)$  of length kr where the size, and multiplicity, of each part is multiplied by k.

In characteristic zero, the partition  $\lambda(r, s, 0)$  was shown to be the standard partition independently by Aitken (1934), Roth (1934), and Littlewood (1936); for more background and references see [18, p. 416]. The change-of-basis matrix exhibiting the Jordan canonical form of  $J_r \otimes J_s$  may be chosen to have rational entries, and so in 'large'

<sup>&</sup>lt;sup>3</sup> We may assume that  $F = \mathbb{F}_p$  or  $\mathbb{Q}$  as the Jordan form of  $J_r \otimes J_s$  is invariant under field extensions.

<sup>&</sup>lt;sup>4</sup> This phrase was used by Dmitri Panyushev in the review MR2728146, but it is not used commonly.

Download English Version:

## https://daneshyari.com/en/article/4583963

Download Persian Version:

https://daneshyari.com/article/4583963

Daneshyari.com