

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Torsion pairs in a triangulated category generated by a spherical object

ALGEBRA

Raquel Coelho Simões^a, David Pauksztello^{b,*}

^a Centro de Análise Funcional, Estruturas Lineares e Aplicações, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C6, Piso 2, 1749-016, Lisboa, Portugal

^b School of Mathematics, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom

ARTICLE INFO

Article history: Received 8 August 2014 Available online 3 December 2015 Communicated by Michel Van den Bergh

MSC: primary: 05E10, 16G20, 16G70, 18E30 secondary: 05C10

Keywords: Auslander-Reiten theory Calabi-Yau triangulated category Spherical object Ptolemy arc Torsion pair

Contents

Introduction 2 1. Torsion pairs, extension closure and functorial finiteness 4

 $\ast\,$ Corresponding author.

E-mail addresses: rcoelhosimoes@campus.ul.pt (R. Coelho Simões), david.pauksztello@manchester.ac.uk (D. Pauksztello).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.09.011} 0021-8693 @ 2015 Elsevier Inc. All rights reserved.$

ABSTRACT

We extend Ng's characterisation of torsion pairs in the 2-Calabi–Yau triangulated category generated by a 2-spherical object to the characterisation of torsion pairs in the w-Calabi–Yau triangulated category, T_w , generated by a w-spherical object for any $w \in \mathbb{Z}$. Inspired by the combinatorics of T_w for $w \leq -1$, we also characterise the torsion pairs in certain negative Calabi–Yau orbit categories of the bounded derived category of the path algebra of Dynkin type A.

© 2015 Elsevier Inc. All rights reserved.

2.	Triangulated categories generated by <i>w</i> -spherical objects	5
3.	Extensions in T_w with indecomposable outer terms for $w \neq 1$	9
4.	Extensions in T_w with decomposable outer terms for $w \neq 1$	16
5.	The combinatorial model	23
6.	Contravariant-finiteness	24
7.	Torsion pairs and the Ptolemy condition in T_w for $w \neq 0, 1, \ldots, \ldots, \ldots$	26
8.	Torsion pairs and the Ptolemy condition in T_0	34
9.	Torsion pairs and extensions in T_1	37
10.	Torsion pairs in $C_w(A_n)$	39
Ackno	weldgments	46
Refere	ences	46

Introduction

Calabi–Yau (CY) triangulated categories are triangulated categories that satisfy an important duality. They are becoming increasingly important throughout mathematics and physics, for example as 3-CY categories arising from Calabi–Yau threefolds in algebraic geometry and string theory, to 3-CY categories arising in representation theory coming from quivers with potential. Of particular importance in representation theory are (2-)cluster categories, which provide categorifications of important aspects of the theory of cluster algebras. There are higher analogues, so-called w-cluster categories for $w \ge 2$, which are w-CY. These give rise to an important family of categories of positive CY dimension which satisfy many interesting and important homological and combinatorial properties.

Throughout this article \mathbf{k} will be an algebraically closed field. Let T be a \mathbf{k} -linear triangulated category and $w \in \mathbb{Z}$. An object $s \in \mathsf{T}$ is *w*-spherical if it is a *w*-Calabi–Yau object and its graded endomorphism algebra is given by

 $\operatorname{Hom}^{\bullet}(s,s) = \mathbf{k}[x]/(x^2)$, where x sits in cohomological degree -w.

In particular, s has the 'same cohomology' as the w-sphere. We refer the reader to Section 2 for a more precise definition.

Let T_w be a k-linear triangulated category that is idempotent complete and generated by a *w*-spherical object. The T_w constitute a family of categories which are *w*-CY whose structure is sufficiently simple to allow concrete computation. As such, they provide a 'natural laboratory' in which to explore the properties of CY triangulated categories, as witnessed by the intense recent interest in these categories; see [13,15,20,26,28]. Indeed, for $w \ge 2$, T_w occurs naturally as a *w*-cluster category of type A_∞ .

Owing to their importance and ubiquity, much work has been carried out on understanding triangulated categories of positive CY-dimension. However, very little work has been carried out on understanding the properties of triangulated categories of negative CY-dimension, although there is the beginning of a theory emerging in [10,12,13, 24]. In [24], it was shown that for $w \ge 1$, the category T_w has one family of bounded Download English Version:

https://daneshyari.com/en/article/4583971

Download Persian Version:

https://daneshyari.com/article/4583971

Daneshyari.com