

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The 290 fixed-point sublattices of the Leech lattice

Gerald Höhn a,*, Geoffrey Mason b,*,1

Department of Mathematics, Kansas State University, United States
Department of Mathematics, University of California at Santa Cruz, United States

ARTICLE INFO

Article history: Received 10 June 2015 Available online 10 November 2015 Communicated by Jon Carlson

Keywords: Leech lattice Fixed-point sublattice Conway group

ABSTRACT

We determine the orbits of fixed-point sublattices of the Leech lattice with respect to the action of the Conway group Co_0 . There are 290 such orbits. Detailed information about these lattices, the corresponding coinvariant lattices, and the stabilizing subgroups, is tabulated in several tables. \odot 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Leech lattice Λ is the unique positive-definite, even, unimodular lattice of rank 24 without roots [30,13,2]. It may also be characterized as the most densely packed lattice in dimension 24 [11]. The group of isometries of Λ is the Conway group Co₀ [12]. For a subgroup $H \subseteq \text{Co}_0$ we set

$$\Lambda^H = \{ v \in \Lambda \ \mid \ hv = v \ \text{ for all } h \in H \}.$$

We call such a sublattice of Λ a fixed-point sublattice. Let \mathcal{F} be the set of all fixed-point sublattices of Λ . The Conway group acts by translation on \mathcal{F} , because if $g \in \text{Co}_0$,

^{*} Corresponding authors.

E-mail addresses: gerald@monstrous.moonshine.de (G. Höhn), gem@ucsc.edu (G. Mason).

Supported by NSF grant 1343609.

then $g\Lambda^G = \Lambda^{gHg^{-1}}$. In this note, we classify the Co₀-orbits of fixed-point sublattices. We will prove:

Theorem 1.1. Under the action of Co_0 , there are exactly 290 orbits on the set of fixed-point sublattices of Λ .

The purpose of the present note is not merely to enumerate the orbits of fixed-point sublattices, but to provide in addition a detailed analysis of their properties. In particular, this includes the *stabilizers G*, which are the (largest) subgroups of Co₀ that stabilize a given fixed-point sublattice pointwise. Information about the orbits of fixed-point lattices and their fixing groups is given in Table 1 in Section 4. Based on the theory that we present in Sections 2 and 3, this information was obtained by relying on extensive computer calculations using the computer algebra system MAGMA [6]. We shall say more about this in due course.

There are a number of reasons that make the classification of fixed-point lattices desirable. The group quotient $\text{Co}_1 = \text{Co}_0/\{\pm 1\}$ is one of the 26 sporadic simple groups. It contains 11 additional sporadic groups, 9 of which can be described in terms of lattice stabilizers. Although these particular realizations have been known for a long time, the complete picture that we provide is new.

The Leech lattice is also the starting point of the construction of interesting vertex operator algebras [3,22] and generalized Kac-Moody Lie algebras. Such Kac-Moody Lie algebras have root lattices that can often be described in terms of fixed-point lattices inside Λ [37], and the associated denominator identities provide Moonshine for the corresponding subgroups [4].

The geometry of K3 surfaces and certain hyperkähler manifolds X, over both the field of complex numbers and in finite characteristic, is controlled (using Torelli-type theorems) by lattices related to Λ . In this way, symmetry groups of X can be mapped into Co_0 , and properties of the fixed-point lattices control which groups may appear. See [36,34,29,17] for K3 surfaces and [32,28,27] for other hyperkähler manifolds.

Much of the impetus for studying the finite symmetry groups of such manifolds, and recent developments in the related area of $Mathieu\ Moonshine\ [21]$, came from the well-known theorem of Mukai [34]. This states that a finite group G of symplectic automorphisms of a K3 surface is isomorphic to a subgroup of the Mathieu group M_{23} with at least five orbits in its natural permutation representation on 24 letters; furthermore, there are just 11 subgroups (up to isomorphism) which are maximal subject to these conditions. A typical application of our results leads to a simplified approach to this theorem. Indeed, lattice-theoretic arguments [29,14] show that G can be embedded into Co_0 in such a way that $rk\ \Lambda^G \geq 5$ and $\alpha(\Lambda^G) := rk\ \Lambda^G - rk\ A_{\Lambda^G} \geq 2$ (see Section 2 for notation). The containment $G \subseteq M_{23}$ follows immediately from Table 1, moreover the 11 maximal such groups are those G in Table 1 with $rk\ \Lambda^G = 5$ and $\alpha(\Lambda^G) \geq 2$. The advantage of this approach compared to that of Kondō [29], who initiated the lattice-

Download English Version:

https://daneshyari.com/en/article/4583990

Download Persian Version:

https://daneshyari.com/article/4583990

<u>Daneshyari.com</u>