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Let K be an algebraically closed field. There has been much 
interest in characterizing multiple structures in Pn

K defined 
on a linear subspace of small codimension under additional 
assumptions (e.g. Cohen–Macaulay). We show that no such 
finite characterization of multiple structures is possible if 
one only assumes unmixedness. Specifically, we prove that 
for any positive integers h, e ≥ 2 with (h, e) �= (2, 2) and 
p ≥ 5 there is a homogeneous ideal I in a polynomial ring 
over K such that (1) the height of I is h, (2) the Hilbert–
Samuel multiplicity of R/I is e, (3) the projective dimension 
of R/I is at least p and (4) the ideal I is primary to a 
linear prime (x1, . . . , xh). This result is in stark contrast to 
Manolache’s characterization of Cohen–Macaulay multiple 
structures in codimension 2 and multiplicity at most 4
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and also to Engheta’s characterization of unmixed ideals of 
height 2 and multiplicity 2.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let K be an algebraically closed field. We consider projective multiple (i.e. gener-
ically nonreduced) schemes whose reduced subschemes are linear subspaces in Pn

K for 
some n. Multiple structures in general have been widely studied with connections to vec-
tor bundles [12,1,14], Hartshorne’s Conjecture [25], linkage theory [20] and set-theoretic 
complete intersections [24]. In our setting where the reduced subscheme is a smaller pro-
jective space, there are finite characterizations of multiple structures in codimension two 
in small degree and under certain hypotheses: Manolache gave structure theorems for 
scheme-theoretically Cohen–Macaulay multiple structures of degree at most 4 [15] and 
locally complete intersection multiple structures of degree at most 6 [16]. See [17] for a 
nice survey of these results.

The defining ideals of these schemes correspond to homogeneous ideals that are pri-
mary to a prime ideal generated by linear forms in a polynomial ring R over K. More 
broadly, we were interested in the homological structure of homogeneous unmixed ideals 
of any polynomial ring over K, that is, ideals whose associated primes all have the same 
height.

Engheta gave a complete characterization of unmixed ideals of height 2 and multi-
plicity 2:

Proposition 1.1. (Engheta [10, Prop. 11].) Let R be a polynomial ring over an alge-
braically closed field and let I ⊂ R be a height two unmixed ideal of multiplicity 2. Then 
pd(R/I) ≤ 3 and I is one of the following ideals.

1. A prime ideal generated by a linear form and an irreducible quadric.
2. (x, y) ∩ (x, z) = (x, yz) with independent linear forms x, y, z.
3. (w, x) ∩ (y, z) = (wy, wz, xy, xz) with independent linear forms w, x, y, z.
4. The (x, y)-primary ideal (x, y)2 + (ax + by) with independent linear forms x, y and 

forms a, b ∈ m such that x, y, a, b form a regular sequence.
5. (x, y2) with independent linear forms x, y.

The hypothesis that K is algebraically closed is essential. Take for instance R =
Q[w, x, y, z] and P = (w2 + x2, y2 + z2, wz − xy, wy + xz). Then P is a prime ideal of 
height 2 and multiplicity 2, but is not degenerate (i.e. does not contain a linear form) 
as in case (1) above. Note that over C, PC[w, x, y, z] is no longer prime but rather of 
type (3) since

PC[w, x, y, z] = (w + ix, y + iz) ∩ (w − ix, y − iz).
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