

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Some remarks on the compressed zero-divisor graph

ALGEBRA

David F. Anderson^{a,*}, John D. LaGrange^b

 ^a Mathematics Department, The University of Tennessee, Knoxville, TN 37996-1320, USA
^b Division of Natural Science and Mathematics, Lindsey Wilson College, Columbia, KY 42728-1223, USA

ARTICLE INFO

Article history: Received 1 September 2014 Available online 9 November 2015 Communicated by Kazuhiko Kurano

MSC: 13A15 13A99 05C25 05C99 20M14

Keywords: Zero-divisor graph Compressed zero-divisor graph Star graph

ABSTRACT

Let R be a commutative ring with $1 \neq 0$. The zero-divisor graph $\Gamma(R)$ of R is the (undirected) graph with vertices the nonzero zero-divisors of R, and distinct vertices r and s are adjacent if and only if rs = 0. The relation on R given by $r \sim s$ if and only if $\operatorname{ann}_R(r) = \operatorname{ann}_R(s)$ is an equivalence relation. The compressed zero-divisor graph $\Gamma_E(R)$ of R is the (undirected) graph with vertices the equivalence classes induced by \sim other than [0] and [1], and distinct vertices [r] and [s] are adjacent if and only if rs = 0. Let R_E be the set of equivalence classes for \sim on R. Then R_E is a commutative monoid with multiplication [r][s] = [rs]. In this paper, we continue our study of the monoid R_E and the compressed zero-divisor graph $\Gamma_E(R)$. We consider several equivalence relations on R and their corresponding graphtheoretic translations to $\Gamma(R)$. We also show that the girth of $\Gamma_E(R)$ is three if it contains a cycle and determine the structure of $\Gamma_E(R)$ when it is acyclic and the monoids R_E when $\Gamma_E(R)$ is a star graph.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.08.021 \\ 0021-8693/© 2015 Elsevier Inc. All rights reserved.$

E-mail addresses: anderson@math.utk.edu (D.F. Anderson), lagrangej@lindsey.edu (J.D. LaGrange).

1. Introduction

Let R be a commutative ring with $1 \neq 0$, and let Z(R) be the set of zero-divisors of R. As in [8], the zero-divisor graph $\Gamma(R)$ of R is the (undirected) graph whose vertices are the elements of $Z(R) \setminus \{0\}$ such that distinct vertices r and s are adjacent if and only if rs = 0. The relationship between ring-theoretic properties of R and graph-theoretic properties of $\Gamma(R)$ has been studied extensively. For example, $\Gamma(R)$ is connected with diam($\Gamma(R)$) ≤ 3 , gr($\Gamma(R)$) ≤ 4 if $\Gamma(R)$ contains a cycle ([8, Theorems 2.3 and 2.4], [16, Theorem 1.6], [25, (1.4)]), and $\Gamma(R)$ is a finite graph with at least one vertex if and only if R is finite and not a field [8, Theorem 2.2].

Let S be a (multiplicative) commutative semigroup with 0, and let Z(S) be the set of zero-divisors of S. As in [15], the zero-divisor graph $\Gamma(S)$ of S is the (undirected) graph whose vertices are the elements of $Z(S) \setminus \{0\}$ such that two distinct vertices x and y are adjacent if and only if xy = 0. Then $\Gamma(S)$ is connected with diam($\Gamma(S)$) ≤ 3 [15, Theorem 1.2], and gr($\Gamma(S)$) ≤ 4 if $\Gamma(S)$ contains a cycle (cf. [15, Theorem 1.5]).

For any elements r and s of R, define $r \sim s$ if and only if $\operatorname{ann}_R(r) = \operatorname{ann}_R(s)$. Then \sim is an equivalence relation on R; for any $r \in R$, let $[r]_R = \{s \in R \mid r \sim s\}$. For example, it is clear that $[0]_R = \{0\}$, $[1]_R = R \setminus Z(R)$, and $[r]_R \subseteq Z(R) \setminus \{0\}$ for every $r \in R \setminus ([0]_R \cup [1]_R)$. Furthermore, the operation on the equivalence classes given by $[r]_R[s]_R = [rs]_R$ is well-defined (i.e., \sim is a congruence relation on R) and thus makes the set $R_E = \{[r]_R \mid r \in R\}$ into a commutative monoid. Moreover, R_E is a commutative Boolean monoid if R is a reduced ring. The monoid R_E has been studied in [1,2,4-6].

As in [28], $\Gamma_E(R)$ will denote the (undirected) graph $\Gamma(R_E)$, called the *compressed* zero-divisor graph of R, whose vertices are the elements of $Z(R_E) \setminus \{[0]_R\} = R_E \setminus \{[0]_R, [1]_R\}$ such that distinct vertices $[r]_R$ and $[s]_R$ are adjacent if and only if $[r]_R[s]_R = [0]_R$, if and only if rs = 0. Thus, by our earlier remarks, $\Gamma_E(R)$ is connected with diam $(\Gamma_E(R)) \leq 3$ and $\operatorname{gr}(\Gamma_E(R)) \leq 4$ if $\Gamma_E(R)$ contains a cycle. Note that if r and s are distinct adjacent vertices in $\Gamma(R)$, then $[r]_R$ and $[s]_R$ are adjacent in $\Gamma_E(R)$ if and only if $[r]_R \neq [s]_R$ (for example, this will always hold if R is reduced since if r and s are adjacent in $\Gamma(R)$ and $[r]_R = [s]_R$, then $r^2 = s^2 = 0$). In particular, r - s - t - r is a triangle in $\Gamma(R)$ if and only if $[r]_R - [s]_R - [t]_R - [r]_R$ is a triangle in $\Gamma_E(R)$ when R is reduced.

In this paper, we continue our investigation of the monoid R_E and the compressed zero-divisor graph $\Gamma_E(R)$. In [4], we were interested in determining when $\Gamma_E(R) \cong \Gamma(S)$ for a commutative ring S with $1 \neq 0$. For example, given a commutative ring R with $1 \neq 0$ and $Z(R) \neq \{0\}$, it is shown that the mapping $\varphi_R : \Gamma(R) \to \Gamma_E(R)$ defined by $\varphi_R(r) =$ $[r]_R$ is a bijection if and only if either R is a Boolean ring or $R \in \{\mathbb{Z}_4, \mathbb{Z}_2[X]/(X^2)\}$ [4, Theorem 2.9]. We also showed that for a reduced commutative ring R with $1 \neq 0$, there is a reduced commutative ring S with $1 \neq 0$ such that $\Gamma_E(R) \cong \Gamma(S)$ if and only if T(R) is von Neumann regular [4, Theorem 4.3]. In [5], we examined when R_E can be embedded into R, either as a monoid or a partially ordered set, and we investigated when Download English Version:

https://daneshyari.com/en/article/4584003

Download Persian Version:

https://daneshyari.com/article/4584003

Daneshyari.com