

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Global resolution of singularities subordinated to a 1-dimensional foliation

André Belotto

University of Toronto, Canada

ARTICLE INFO

Article history: Received 27 November 2014 Available online 9 November 2015 Communicated by Steven Dale Cutkosky

Keywords: Resolution of singular varieties Singular foliations Log-Canonical foliations Monomial foliations Analytic geometry

ABSTRACT

Let M be an analytic manifold over $\mathbb R$ or $\mathbb C$, θ a 1-dimensional Log-Canonical (resp. monomial) singular distribution and $\mathcal I$ a coherent ideal sheaf defined on M. We prove the existence of a resolution of singularities for $\mathcal I$ that preserves the Log-Canonicity (resp. monomiality) of the singularities of θ . Furthermore, we apply this result to provide a resolution of a family of ideal sheaves when the dimension of the parameter space is equal to the dimension of the ambient space minus one.

© 2015 Elsevier Inc. All rights reserved.

Contents

1.	Introd	uction	398
	1.1.	Example	401
	1.2.	Application: resolution in families	402
2.	Singul	ar distributions	402
	2.1.	Log-Canonical singular distributions	402
	2.2.	Monomial singular distribution	403
	2.3.	θ -admissible blowings-up	406
3.	Foliate	ed ideal sheaf	408
	3.1.	The tangency chain	408
	3.2.	Chain-preserving smooth morphism	410
	3.3.	Blow-up functors	411

E-mail address: andre.belottodasilva@utoronto.ca.

	3.4.	Resolution of singularities	1
4.	Resolu	tion of an invariant ideal sheaf	12
	4.1.	Statement of the result	12
	4.2.	Proof of Proposition 4.1	12
5.	Resolu	tion of singularities subordinated to a 1-foliation	4
	5.1.	Statement of the result	4
	5.2.	Proof of Theorem 5.1	15
	5.3.	Proof of Proposition 5.2	16
	5.4.	Proof of Proposition 5.3	18
Acknowledgments		nents	22
Refere	ences .		22

1. Introduction

A foliated ideal sheaf is a quadruple $(M, \theta, \mathcal{I}, E)$, where: M is a smooth analytic manifold of dimension n over a field \mathbb{K} (where \mathbb{K} is \mathbb{R} or \mathbb{C}); \mathcal{I} is a coherent and everywhere non-zero ideal sheaf of M; E is an ordered collection $E = (E^{(1)}, \dots, E^{(l)})$, where each $E^{(i)}$ is a smooth divisor on M such that $\sum_i E^{(i)}$ is a reduced divisor with simple normal crossings (we will say that E is a SNC divisor for shortness); θ is an involutive singular distribution defined over M and everywhere tangent to E. In the same notation, a foliated analytic manifold is the triple (M, θ, E) .

The main objective of this work is to find a resolution of singularities for \mathcal{I} that preserves the class of singularities of θ . In order to be precise and set notation we briefly recall some basic notions of singular distributions and resolution of singularities:

• Singular distributions (we follow [1]): Let Der_M denote the sheaf of analytic vector fields over M, i.e., the sheaf of analytic sections of TM. An involutive singular distribution is a coherent sub-sheaf θ of Der_M such that for each point p in M the stalk $\theta_p := \theta.\mathcal{O}_p$ is closed under the Lie bracket operation.

Consider the quotient sheaf $Q = Der_M/\theta$. The singular set of θ is defined by the closed analytic subset $S(\theta) = \{p \in M : Q_p \text{ is not a free } \mathcal{O}_p \text{ module}\}$. A singular distribution θ is called regular if $S(\theta) = \emptyset$. On $M \setminus S(\theta)$ there exists a unique analytic subbundle L of $TM|_{M\setminus S(\theta)}$ such that θ is the sheaf of analytic sections of L. We assume that the dimension of the $\mathbb K$ vector space L_p is the same for all points p in $M \setminus S$ (this always holds if M is connected). This dimension is called the leaf dimension of θ . In what follows, we will mainly consider singular foliations with leaf dimension 1, which are called singular 1-dimensional distributions.

A blowing-up $\sigma:(\widetilde{M},\widetilde{E})\to (M,E)$ is admissible if the center $\mathcal C$ is a closed and regular sub-manifold of M that has simple normal crossings with E. The divisor \widetilde{E} stands for the union of the strict transform of E with the new exceptional divisor F of the blowing-up σ . We note that the divisor \widetilde{E} has simple normal crossings whenever the blowing-up is admissible (see pages 137–138 of [15] for details). Finally, given an admissible blowing-up:

Download English Version:

https://daneshyari.com/en/article/4584007

Download Persian Version:

https://daneshyari.com/article/4584007

<u>Daneshyari.com</u>