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A finite simple group of Lie type in defining characteristic 
p has exactly two p-blocks, the principal block and a block 
of defect zero consisting of the Steinberg character whose 
degree is the p-part of the order of the group. In this paper we 
characterize finite groups G which have exactly the principal 
p-block and a p-block of defect zero consisting of an irreducible 
character of degree |G|p.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Determining the number of p-blocks of a finite group is in general a very subtle task 
and extremely difficult to answer if at all. The easiest case, namely that G has only 
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one block, has been settled completely by Harris in [10]. The next case, i.e., a complete 
characterization of groups G which have exactly two blocks does not seem to be acces-
sible. In particular, the situation Op(G) �= 1 seems to be out of reach. However if we 
restrict to the case that G has only the principal p-block and a p-block of defect zero 
(which implies Op(G) = 1) the methods are strong enough to determine the group up to 
some extent. This case is of particular interest since the canonical situation is that of a 
finite simple group of Lie type in defining characteristic p (see [12], Section 8.5). In this 
case the block of defect zero consists of the Steinberg character which has degree |G|p.

Definition 1.1. A finite group G is called Lie-type-like for the prime p if G has exactly 
the principal p-block and a p-block of defect zero with an irreducible ordinary character 
of degree |G|p.

In this paper we prove the following two theorems where the second one depends on 
the classification of finite simple groups.

Theorem 1.2. Let G be a finite group with F∗(G) = F(G) and let p be a prime dividing 
|G|. Then G is a Lie-type-like group for the prime p if and only if G = HP where H is 
an elementary abelian normal r-subgroup (r �= p a prime) and P is a Sylow p-subgroup 
of G which acts regularly on the non-trivial elements of H.

All groups occurring in Theorem 1.2 can be classified easily which leads to the follow-
ing consequence.

Corollary 1.3. Let G be a finite group with F∗(G) = F(G) and let p be a prime dividing 
|G|. Then G is a Lie-type-like group for the prime p if and only if one of the following 
holds.

(i) G = HP ≤ GL(m, 2), where H = Fm
2 and P is a Singer cycle in GL(m, 2) of order 

a Mersenne prime p acting regularly on the non-trivial elements of H.
(ii) G = HP , where H = Fr with r a Fermat prime and P = F∗

r acts on H by 
multiplication.

(iii) G = S3 or (C3×C3).Q8, where Q8 is the quaternion group of order 8 acting regularly 
on the non-trivial elements of C3 × C3.

Proof. The “if” part is clear, and it suffices to prove the “only if” part. By Theorem 1.2, 
we write G = HP with |P | = pn and |H| = rm. Since P acts regularly on the non-trivial 
elements of H we have rm − 1 = pn.

If m = 1 = n, then r = 3, p = 2 and G = S3.
If n = 1 < m, then p is a Mersenne prime and P (of order p) is generated by a Singer 

cycle in GL(m, 2) acting on H = Fm
2 .

If m = 1 < n, then r = |P | + 1 = 2n + 1 is a Fermat prime and P = F∗
r acts on 

H = Fr by multiplication.



Download English Version:

https://daneshyari.com/en/article/4584009

Download Persian Version:

https://daneshyari.com/article/4584009

Daneshyari.com

https://daneshyari.com/en/article/4584009
https://daneshyari.com/article/4584009
https://daneshyari.com

