

String C-groups as transitive subgroups of S_n

Peter J. Cameron ^a, Maria Elisa Fernandes ^b, Dimitri Leemans ^{c,*},
Mark Mixer ^d

^a School of Mathematics and Statistics, University of St Andrews, North Haugh,
St Andrews, Fife KY16 9SS, Scotland, United Kingdom

^b Center for Research and Development in Mathematics and Applications,
Department of Mathematics, University of Aveiro, Portugal

^c Department of Mathematics, University of Auckland, Private Bag 92019,
Auckland 1142, New Zealand

^d Department of Applied Mathematics, Wentworth Institute of Technology, Boston,
MA 02115, USA

ARTICLE INFO

Article history:

Received 2 November 2014

Available online 9 November 2015

Communicated by Martin Liebeck

Keywords:

String C-groups

Abstract regular polytopes

Transitive groups

Independent generating sets

ABSTRACT

If Γ is a string C-group which is isomorphic to a transitive subgroup of the symmetric group S_n (other than S_n and the alternating group A_n), then the rank of Γ is at most $n/2 + 1$, with finitely many exceptions (which are classified). It is conjectured that only the symmetric group has to be excluded.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Classifications of string C-groups of high rank from almost simple groups has been a subject of interest for almost a decade now. Some striking results have been obtained, for instance for the symmetric groups. Leemans and Fernandes classified string C-groups of rank $n - 1$ and $n - 2$ for S_n [5,8] and more recently, they extended this classification

* Corresponding author.

E-mail addresses: pjc20@st-andrews.ac.uk (P.J. Cameron), maria.elisa@ua.pt (M.E. Fernandes), d.leemans@auckland.ac.nz (D. Leemans), mixerm@wit.edu (M. Mixer).

to rank $n - 3$ and $n - 4$ with Mixer [9]. The key of such a classification was first to show that, from a certain value of n onwards, all the maximal parabolic subgroups of a string C-group of rank $r \geq n - 4$ must be intransitive. This was done by bounding the rank of string C-groups constructed from transitive groups of degree n that are not S_n nor A_n . These ideas motivated the present paper where we deal with transitive groups in a more general way than in the papers cited above. Another motivation is to contribute to the proof of the following conjecture.

Conjecture 1.1. (See [7, Conjecture 9.1].) *Let $n \geq 12$. The highest rank of an abstract regular polytope having A_n as automorphism group is $\lfloor (n-1)/2 \rfloor$.*

Suppose that $\rho_0, \dots, \rho_{d-1}$ are involutions which generate a string C-group Γ . This means that

- if $|i - j| > 1$, then ρ_i and ρ_j commute (the *string property*);
- if Γ_I denotes the group generated by $\{\rho_i : i \in I\}$, for $I \subseteq \{0, \dots, d-1\}$, then

$$\Gamma_I \cap \Gamma_J = \Gamma_{I \cap J}$$

(the *intersection property*).

It is known that string C-groups are the same thing as automorphism groups of regular polytopes [13, Section 2E]. The number d is the *rank* of the string C-group (or of the polytope).

Suppose that Γ is a string C-group of rank d which is a subgroup of the symmetric group S_n .

- If $\Gamma = S_n$, then $d \leq n - 1$, with equality if and only if the generators ρ_i are the *Coxeter generators* of S_n (that is, $\rho_i = (i+1, i+2)$ for $0 \leq i \leq d-1$) when $n \neq 4$, or equivalently, the polytope is the regular simplex. When $n = 4$, the hemicube gives another set of generators. Moreover, the polytopes (or string C-groups) of ranks $n-2$, $n-3$ and $n-4$ with $\Gamma = S_n$ have been classified [5,9].
- Examples of string C-groups of rank $\lfloor (n-1)/2 \rfloor$ with $\Gamma = A_n$ have been found [6,7]. It is conjectured that this is the largest possible rank for $n \geq 12$ (see above).
- Ranks arbitrarily close to n can be realised by string C-groups corresponding to intransitive subgroups of S_n . For example, if $n = n_1 + \dots + n_k$, where $n_i > 1$ for all i , then take Coxeter generators for S_{n_1}, \dots, S_{n_k} : we obtain a string C-group $\Gamma = S_{n_1} \times \dots \times S_{n_k}$ of rank $n - k$ by ordering the factors arbitrarily.

The groups not covered by these remarks are the transitive subgroups of S_n other than S_n and A_n . We prove the following theorem:

Theorem 1.2. *Let Γ be a string C-group of rank d which is isomorphic to a transitive subgroup of S_n other than S_n or A_n . Then one of the following holds:*

Download English Version:

<https://daneshyari.com/en/article/4584012>

Download Persian Version:

<https://daneshyari.com/article/4584012>

[Daneshyari.com](https://daneshyari.com)