

Journal of Algebra 447 (2016) 664-676

Koszul–Young flattenings and symmetric border rank of the determinant

Cameron Farnsworth

ARTICLE INFO

Article history: Received 19 May 2015 Available online 18 November 2015 Communicated by Reinhard Laubenbacher

Keywords: Computational complexity Determinant Permanent

ABSTRACT

We present new lower bounds for the symmetric border rank of the $n \times n$ determinant for all n. Further lower bounds are given for the 3×3 permanent.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The determinant polynomial is ubiquitous, its properties have been extensively studied. However basic questions regarding its complexity are still not understood. Lower bounds for the (symmetric) border rank of a polynomial provide a measurement of its complexity and, as such, have become an area of growing interest. In this paper we use techniques developed in [12] to explore this question. We prove a new lower bound for the symmetric border rank of the $n \times n$ determinant.

Definition 1.1. Let V be a vector space and let $S^d V$ denote homogeneous degree d polynomials on V^* . Given $P \in S^d V$, define its symmetric rank $R_s(P)$ by

 $E\text{-}mail\ address:\ cfarnsworth@math.tamu.edu.$

 $[\]label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.11.011\\0021-8693/© 2015$ Elsevier Inc. All rights reserved.

C. Farnsworth / Journal of Algebra 447 (2016) 664-676

$$R_s(P) = \min\left\{r \in \mathbb{N} : P = \sum_{i=1}^r (v_i)^d, v_i \in V\right\}.$$

Symmetric rank is not semi-continuous under taking limits or Zariski closure, so we introduce symmetric border rank.

Definition 1.2. Let $P \in S^d V$. Define the symmetric border rank of $P, \underline{R}_s(P)$ to be

$$\underline{R}_s(P) = \min\left\{r \in \mathbb{N} : P \in \overline{\{T : R_s(T) = r\}}\right\}$$

where the overline denotes Zariski closure.

Theorem 1.3. For $n \ge 5$, the following are lower bounds on the symmetric border rank of the determinant, $\underline{R}_s(\det_n)$.

For n even:

$$\underline{R}_s(\det_n) \ge \left(1 + \frac{8(-8+6n^2+n^3)}{(-1+n)(2+n)(4+n)^2(-2+n^2)}\right) \binom{n}{\frac{n}{2}}^2.$$

For n odd:

$$\underline{R}_{s}(\det_{n}) \ge \left(1 + \frac{16(9+8n+n^{2})}{(3+n)(5+n)^{2}(-2+n^{2})}\right) {\binom{n}{\frac{n-1}{2}}}^{2}.$$

Remark 1.4. Previously known lower bounds were

$$\underline{R}_s(\det_n) \ge {\binom{n}{\underline{n}}}^2$$

for n even, and

$$\underline{R}_s(\det_n) \ge \left(\frac{n}{\frac{n-1}{2}}\right)^2$$

for n odd.

Remark 1.5. Asymptotically, our bound is

$$\underline{R}_s(\det_n) \gtrsim \frac{2^{2n+1}}{\pi \cdot n} + \frac{2^{2n+1}}{\pi \cdot n^4}$$

whereas the previous lower bounds are approximately $\underline{R}_s(\det_n) \gtrsim \frac{2^{2n+1}}{\pi \cdot n}$.

Theorem 1.6. $\underline{R}_{s}(\det_{4}) \ge 38.$

Remark 1.7. The previous bound was $\underline{R}_s(\det_4) \ge 36$.

Using a Macaulay2 [8] package developed by Steven Sam [14], we also show

665

Download English Version:

https://daneshyari.com/en/article/4584022

Download Persian Version:

https://daneshyari.com/article/4584022

Daneshyari.com