

[Journal of Algebra 447 \(2016\) 664–676](http://dx.doi.org/10.1016/j.jalgebra.2015.11.011)

Koszul–Young flattenings and symmetric border rank of the determinant

Cameron Farnsworth

Article history: Received 19 May 2015 Available online 18 November 2015 Communicated by Reinhard Laubenbacher

Keywords: Computational complexity Determinant Permanent

A B S T R A C T

We present new lower bounds for the symmetric border rank of the $n \times n$ determinant for all n . Further lower bounds are given for the 3×3 permanent.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The determinant polynomial is ubiquitous, its properties have been extensively studied. However basic questions regarding its complexity are still not understood. Lower bounds for the (symmetric) border rank of a polynomial provide a measurement of its complexity and, as such, have become an area of growing interest. In this paper we use techniques developed in [\[12\]](#page--1-0) to explore this question. We prove a new lower bound for the symmetric border rank of the $n \times n$ determinant.

Definition 1.1. Let *V* be a vector space and let S^dV denote homogeneous degree *d* polynomials on V^* . Given $P \in S^dV$, define its symmetric rank $R_s(P)$ by

E-mail address: cfarnsworth@math.tamu.edu.

C. Farnsworth / Journal of Algebra 447 (2016) 664–676 665

$$
R_s(P) = \min \left\{ r \in \mathbb{N} : P = \sum_{i=1}^r (v_i)^d, v_i \in V \right\}.
$$

Symmetric rank is not semi-continuous under taking limits or Zariski closure, so we introduce symmetric border rank.

Definition 1.2. Let $P \in S^dV$. Define the symmetric border rank of $P, R_s(P)$ to be

$$
\underline{R}_s(P) = \min\left\{r \in \mathbb{N} : P \in \overline{\{T : R_s(T) = r\}}\right\}
$$

where the overline denotes Zariski closure.

Theorem 1.3. For $n \geq 5$, the following are lower bounds on the symmetric border rank *of the determinant,* $\underline{R}_s(\det_n)$.

For n even:

$$
\underline{R}_s(\det_n) \ge \left(1 + \frac{8(-8 + 6n^2 + n^3)}{(-1+n)(2+n)(4+n)^2(-2+n^2)}\right) \binom{n}{\frac{n}{2}}^2.
$$

For n odd:

$$
\underline{R}_s(\det_n) \ge \left(1 + \frac{16(9+8n+n^2)}{(3+n)(5+n)^2(-2+n^2)}\right) \left(\frac{n}{\frac{n-1}{2}}\right)^2.
$$

Remark 1.4. Previously known lower bounds were

$$
\underline{R}_s(\det_n) \ge \left(\frac{n}{2}\right)^2
$$

for *n* even, and

$$
\underline{R}_s(\det_n) \ge \left(\frac{n}{n-1}\right)^2
$$

for *n* odd.

Remark 1.5. Asymptotically, our bound is

$$
\underline{R}_s(\det_n) \gtrsim \frac{2^{2n+1}}{\pi \cdot n} + \frac{2^{2n+1}}{\pi \cdot n^4}
$$

whereas the previous lower bounds are approximately $\underline{R}_s(\det_n) \gtrsim \frac{2^{2n+1}}{\pi \cdot n}$.

Theorem 1.6. $R_s(\text{det}_4) \geq 38$.

Remark 1.7. The previous bound was $\underline{R}_s(\text{det}_4) \geq 36$.

Using a Macaulay2 $[8]$ package developed by Steven Sam $[14]$, we also show

Download English Version:

<https://daneshyari.com/en/article/4584022>

Download Persian Version:

<https://daneshyari.com/article/4584022>

[Daneshyari.com](https://daneshyari.com)