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The strong Macdonald theorems state that, for L reductive
and s an odd variable, the cohomology algebras H*(L[z]/2N)
and H*(L[z,s]) are freely generated, and describe the coho-
mological, s-, and z-degrees of the generators. The resulting
identity for the z-weighted Euler characteristic is equivalent
to Macdonald’s constant term identity for a finite root sys-
tem. We calculate H*(p/2"p) and H*(p[s]) for p a standard
parahoric in a twisted loop algebra, giving strong Macdonald
theorems that take into account both a parabolic component
and a possible diagram automorphism twist. In particular we
show that H*(p/z"p) contains a parabolic subalgebra of the
coinvariant algebra of the fixed-point subgroup of the Weyl
group of L, and thus is no longer free. We also prove a strong
Macdonald theorem for H*(b; S*n*) and H*(b/2Vn) when b
and n are Iwahori and nilpotent subalgebras respectively of
a twisted loop algebra. For each strong Macdonald theorem
proved, taking z-weighted Euler characteristics gives an iden-
tity equivalent to Macdonald’s constant term identity for the
corresponding affine root system. As part of the proof, we
study the regular adjoint orbits for the adjoint action of the
twisted arc group associated to L, proving an analogue of the
Kostant slice theorem.
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1. Introduction

Macdonald’s constant term identity states that if A is a reduced root system then
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where my,...,my; is the list of exponents of L and (Z) is the ¢-binomial coefficient.
Macdonald presented the identity as a conjecture in [32], and observed that it constitutes
the untwisted case of a constant term identity for affine root systems. Further extensions
(including a (g, t)-version) and proofs for individual affine root systems followed (see for
instance [4,19,40,38,41,34,18,17,26]) until Cherednik gave a uniform proof of the most
general version using double affine Hecke algebras [7].

Suppose A is the root system of a semisimple Lie algebra L with exponents my, ..., m;.
Prior to Cherednik’s proof, Hanlon observed in [20] that the constant term identity would
follow from a stronger conjecture:
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