

Contents lists available at ScienceDirect

Journal of Algebra

Twisted strong Macdonald theorems and adjoint orbits

William Slofstra

ARTICLE INFO

Article history: Received 1 March 2015 Available online 9 December 2015 Communicated by Shrawan Kumar

Keywords:
Affine Lie algebras
Loop algebras
Macdonald constant term identities
Affine root system
Lie algebra cohomology

ABSTRACT

The strong Macdonald theorems state that, for L reductive and s an odd variable, the cohomology algebras $H^*(L[z]/z^N)$ and $H^*(L[z,s])$ are freely generated, and describe the cohomological, s-, and z-degrees of the generators. The resulting identity for the z-weighted Euler characteristic is equivalent to Macdonald's constant term identity for a finite root system. We calculate $H^*(\mathfrak{p}/z^N\mathfrak{p})$ and $H^*(\mathfrak{p}[s])$ for \mathfrak{p} a standard parahoric in a twisted loop algebra, giving strong Macdonald theorems that take into account both a parabolic component and a possible diagram automorphism twist. In particular we show that $H^*(\mathfrak{p}/z^N\mathfrak{p})$ contains a parabolic subalgebra of the coinvariant algebra of the fixed-point subgroup of the Weyl group of L, and thus is no longer free. We also prove a strong Macdonald theorem for $H^*(\mathfrak{b}; S^*\mathfrak{n}^*)$ and $H^*(\mathfrak{b}/z^N\mathfrak{n})$ when \mathfrak{b} and n are Iwahori and nilpotent subalgebras respectively of a twisted loop algebra. For each strong Macdonald theorem proved, taking z-weighted Euler characteristics gives an identity equivalent to Macdonald's constant term identity for the corresponding affine root system. As part of the proof, we study the regular adjoint orbits for the adjoint action of the twisted arc group associated to L, proving an analogue of the Kostant slice theorem.

© 2015 Elsevier Inc. All rights reserved.

Contents

1.	Introd	luction	566
	1.1.	Organization	569
2.	Cohomology of standard parahorics		569
	2.1.	Notation and terminology	569
	2.2.	Exponents and diagram automorphisms	570
	2.3.	Cohomology of superpolynomials in a standard parahoric	571
	2.4.	Cohomology of the truncated algebra	574
	2.5.	The Macdonald constant term identity	576
3.	The L	aplacian calculation and the set of harmonic forms	579
	3.1.	Nakano's identity and the semi-infinite chain complex	582
	3.2.	Kahler metrics for parahorics and the derivation J	584
	3.3.	Calculation of the curvature term	585
	3.4.	Proof of Theorems 3.3 and 3.5	588
4.	Twiste	ed arc and jet schemes and the twisted arc group	588
	4.1.	Twisted arc and jet schemes	589
	4.2.	Connectedness of the twisted arc group	592
5.	Slice t	theorems for the adjoint action	594
	5.1.	The regular semisimple slice	594
	5.2.	Arcs in the regular locus	598
6.	Calcu	lation of parahoric cohomology	603
	6.1.	Proof of Proposition 2.2	603
	6.2.	Proof of Theorem 2.5	603
	6.3.	Proof of Theorem 2.6	605
7.	Spect	ral sequence argument for the truncated algebra	607
Acknowledgments			612
References			

1. Introduction

Macdonald's constant term identity states that if Δ is a reduced root system then

$$[e^{0}] \prod_{\alpha \in \Delta^{+}} \prod_{i=1}^{N} (1 - q^{i-1}e^{-\alpha})(1 - q^{i}e^{\alpha}) = \prod_{i=1}^{l} \binom{N(m_{i} + 1)}{N}_{q}, \tag{1}$$

where m_1, \ldots, m_l is the list of exponents of L and $\binom{a}{b}_q$ is the q-binomial coefficient. Macdonald presented the identity as a conjecture in [32], and observed that it constitutes the untwisted case of a constant term identity for affine root systems. Further extensions (including a (q, t)-version) and proofs for individual affine root systems followed (see for instance [4,19,40,38,41,34,18,17,26]) until Cherednik gave a uniform proof of the most general version using double affine Hecke algebras [7].

Suppose Δ is the root system of a semisimple Lie algebra L with exponents m_1, \ldots, m_l . Prior to Cherednik's proof, Hanlon observed in [20] that the constant term identity would follow from a stronger conjecture:

Download English Version:

https://daneshyari.com/en/article/4584049

Download Persian Version:

https://daneshyari.com/article/4584049

Daneshyari.com