

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Subgroup-closed lattice formations

ALGEBRA

Xiaolan Yi^{a,*,1}, S.F. Kamornikov^b

 ^a Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
^b Gomel Branch of International University MITSO, Belarus, Gomel 246019, Belarus

ARTICLE INFO

Article history: Received 13 December 2014 Available online 26 August 2015 Communicated by E.I. Khukhro

MSC: 20D10 20D15 20D20

Keywords: Finite group Formation Lattice Residual

ABSTRACT

A formation \mathfrak{F} of finite groups is called a lattice formation if the set of all \mathfrak{F} -subnormal subgroups is a sublattice of the lattice of all subgroups in every finite group. The main result of this paper describes the family of all subgroup-closed lattice formations, and it can be regarded as an important step towards the solution of Shemetkov's classification problem.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. One of the most striking results in the theory of subnormal subgroups is the celebrated "join" theorem, proved by H. Wielandt in 1939 [12]: the subgroup generated by two

E-mail addresses: yixiaolan2005@126.com (X. Yi), sfkamornikov@mail.ru (S.F. Kamornikov).

¹ Research of the first author is supported by the NNSF grant of China (Grants 11101369; 11471055).

 $[\]ast\,$ Corresponding author.

subnormal subgroups of a finite group is itself subnormal. As a result, the set sn(G) of all subnormal subgroups of a group G is a sublattice of the subgroup lattice.

Wielandt's theorem was developed in formation theory using concepts of \mathfrak{F} -subnormality and K- \mathfrak{F} -subnormality. We refer to [2, Chapter 6] for a convenient account on the topic.

The first concept was proposed by R. Carter and T. Hawkes [3]. Let \mathfrak{F} be a non-empty formation. A subgroup H of a group G is said to be \mathfrak{F} -subnormal in G if either H = G or there exists a maximal chain of subgroups

$$H = H_0 \subset H_1 \subset \cdots \subset H_n = G$$

such that $H_i^{\mathfrak{F}} \subseteq H_{i-1}$ for all $i = 1, \ldots, n$. Following [2], the set of all \mathfrak{F} -subnormal subgroups of a group G is denoted by $sn_{\mathfrak{F}}(G)$.

It is rather clear that the \mathfrak{N} -subnormal subgroups of a group G for the formation \mathfrak{N} of all nilpotent groups are subnormal, and they coincide in the soluble universe. However the equality $sn_{\mathfrak{N}}(G) = sn(G)$ does not hold in general.

To avoid the above situation, O.H. Kegel [7] introduced a somewhat different notion of \mathfrak{F} -subnormality. It unites the notions of subnormal and \mathfrak{F} -subnormal subgroup.

A subgroup H of a group G is called \mathfrak{F} -subnormal in the sense of Kegel (or simply K- \mathfrak{F} -subnormal) in G if there exists a chain of subgroups

$$H = H_0 \subseteq H_1 \subseteq \dots \subseteq H_n = G$$

such that H_{i-1} is either normal in H_i or $H_i^{\mathfrak{F}} \subseteq H_{i-1}$ for all $i = 1, \ldots, n$. We shall write $H \in sn_{K-\mathfrak{F}}(G)$ and denote by $sn_{K-\mathfrak{F}}(G)$ the set of all K- \mathfrak{F} -subnormal subgroups of a group G.

Obviously, $sn_{K-\mathfrak{N}}(G) = sn(G)$ for every group G.

Let \mathfrak{F} be a formation. One might wonder whether the set of \mathfrak{F} -subnormal subgroups of a group forms a sublattice of the subgroup lattice. As the Example 6.3.1 in [2] shows, the answer is in general negative.

Therefore the following question naturally arises:

Which are the formations \mathfrak{F} for which the set $sn_{\mathfrak{F}}(G)$ is a sublattice of the subgroup lattice of G for every group G?

This question was first proposed by L.A. Shemetkov in his monograph [9, Problem 12] in 1978 and it appeared in the Kourovka Notebook [8, Problem 9.75] in 1984.

In 1992, A. Ballester-Bolinches, K. Doerk, and M.D. Perez-Ramos [1] gave the answer to that question in the soluble universe for subgroup-closed saturated formations. In 1993, A.F. Vasil'ev, S.F. Kamornikov, and V.N. Semenchuk [11] published the solution of Shemetkov's problem in the general finite universe for subgroup-closed saturated formations. As a significant progress, in 2002, A.F. Vasil'ev and the second author in [10] characterized the subgroup-closed lattice formations which are soluble.

In 1978, O.H. Kegel [7] showed that if \mathfrak{F} is a subgroup-closed formation such that $\mathfrak{FF} = \mathfrak{F}$, then the set of all K- \mathfrak{F} -subnormal subgroups of a group G is a sublattice of the

Download English Version:

https://daneshyari.com/en/article/4584095

Download Persian Version:

https://daneshyari.com/article/4584095

Daneshyari.com