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We consider bounded complexes P• of finitely generated 
projective A-modules whose homologies have finite projective 
dimension and are locally Cohen–Macaulay. We give a 
necessary and sufficient condition so that its dual P ∗

• also 
has the same property.
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1. Introduction

Throughout this paper A will denote a Cohen–Macaulay (CM) ring with dimAm =
d ∀ m ∈ Max(A). Throughout, “CM” abbreviates “Cohen–Macaulay” and “FPD” abbre-
viates “finite projective dimension”, which clarifies the title of the paper.
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To introduce the main results, in this paper, let M denote a finitely generated 
A-module with proj dim(M) = r < ∞. When A is local, then M is Cohen–Macaulay 
if and only if grade(M) = r. In this case, Exti(M, A) = 0 ∀ i �= r. However, even in 
the non-local case, grade of M is defined as grade(M) := min{i : Exti(M, A) �= 0}
(see [6]). Let B denote the category of such finitely generated A-modules M , with 
proj dim(M) = grade(M). Then, ∀ M ∈ B, Exti(M, A) = 0 ∀ i �= proj dim(M).

Now suppose P• is an object in the category Chb
B(P(A)) of finite complexes of finitely 

generated projective A-modules, with homologies in B. In this paper, we give a necessary 
and sufficient condition, for such a complex P• ∈ Chb

B(P(A)), so that its dual P ∗
• is also 

in Chb
B(P(A)).

To further describe this condition let the homology Ht(P•) �= 0, at degree t and 
ρt = proj dim (Ht(P•)). The homomorphism Ht(P•) −→ Pt

Bt
, where Bt = ∂t+1(Pt+1), 

induces a homomorphism

ιt : Extρt

(
Pt

Bt
, A

)
−→ Extρt (Ht(P•), A)

The main Theorem 3.6 states that the dual P ∗
• ∈ Chb

B(P(A)) if and only if ιt is an 
isomorphism, whenever Ht(P•) �= 0.

The theorem immediately applies to complexes P ∗
• ∈ Chb(P(A)) whose homologies 

are locally CMFPD (see Corollary 3.7). The theorem also applies to a number of inter-
esting subcategories of B, for which ιt is already an isomorphism, for all such t. Among 
them are the categories B(n) = {M ∈ B : proj dim(M) = n}. Note, A := B(d) is the 
category of modules of finite length and finite projective dimension. The stability of 
P• ∈ Chb

A(P(A)), under duality is a theorem in [4].
We underscore that this paper is part of a wider study [4,5] of duality of subcategories 

of derived categories and their Witt groups. While we have particular interest in the 
setting of singular varieties and we also provide further insight into nonsingular varieties 
in these articles. Our interest in Witt theory stems from the introduction of Chow–Witt 
groups, [1] and developed by Fasel [3], as obstruction groups for projective modules to 
split off a free direct summand. The readers are referred to [4] for further introductory 
comments. To be more specific, one of the primary motivations behind this study has 
been to address the Witt theory, for non-regular (Cohen–Macaulay) schemes X, with 
dimX = d, while this article addresses the duality aspect of the same. Let V (X) denote 
the category of locally free sheaves on X and Db(V (X)) denote the derived category of 
finite complexes of locally free sheaves. Let M(X, d) denote the subcategory of Coh(X)
with finite length and finite V (X)-dimension. (For unexplained notations, readers are 
referred to [5,4].) As a consequence of Theorem 3.6, it follows that Db

M(X,d)(V (X)) is 
closed under the usual duality induced by E �→ Hom(E , OX). This allows us [5,4] to give 
a definition of shifted Witt groups W r(Db

M(X,d)(X)) of Db
M(X,d)(X), while Db

M(X,d)(X)
fails to inherit a triangulated structure. Also note that M(X, d) has a duality sending 
F �→ Extd(F , OX) and hence a Witt group W (M(X, d)) is defined. It was established 
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