

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Identities, Ore extensions and character skew derivations

ALGEBRA

Chen-Lian Chuang

Department of Mathematics, National Taiwan University, Taipei 106, Taiwan, ROC

ARTICLE INFO

Article history: Received 16 January 2015 Available online 29 June 2015 Communicated by Louis Rowen

 $\begin{array}{c} MSC: \\ 16N60 \\ 16R50 \\ 16S36 \\ 16W20 \\ 16W25 \\ 16W30 \end{array}$

Keywords: Prime ring Automorphism Skew derivation Identity Ore extension Skew polynomial rings q-skew derivation Character skew derivation

ABSTRACT

Following [17], a σ -derivation δ is called quasi-algebraic if there exist $a, a_i \in Q$ such that $\delta^k(x) + \sum_{i=1}^{k-1} a_i \delta^i(x) + ax - \sigma^k(x)a = 0$ for $x \in Q$. Let k be the minimal such integer and g_0, g_1, \ldots mutually outer automorphisms of Q. Let $f(z_{ij})$ be a generalized polynomial in variables z_{ij} , where $i \geq 0$ and $0 \leq j < k$. It is shown in [6] that if $f(g_i \delta^j(x))$ or $f(\delta^j g_i(x))$ is an identity, then so is $f(z_{ij})$. We generalize this to sets of skew derivations in Theorems 1 and 2. In Theorem 3, we apply these results to the Ore extensions of several variables of [2] and in Theorem 4 to the character Hopf algebras of the character skew derivations of [12].

@ 2015 Elsevier Inc. All rights reserved.

E-mail address: chuang@math.ntu.edu.tw.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jalgebra.2015.06.013} 0021\mbox{-}8693 \ensuremath{\textcircled{\sc 0}}\ 2015 \mbox{ Elsevier Inc. All rights reserved.}$

1. Results

A map $\theta: R \to R$ is called *additive* if $\theta(x + y) = \theta(x) + \theta(y)$ for $x, y \in R$. The set of all additive maps $R \to R$ forms a ring under point-wise addition and composition multiplication. By an automorphism of R, we mean a *bijective* additive map $\sigma: R \to R$ such that $\sigma(xy) = \sigma(x)\sigma(y)$ for $x, y \in R$. Given a unit $u \in R$, the map $I_u: x \in R \mapsto$ uxu^{-1} defines an automorphism of R, called the inner automorphism defined by u. By a σ -derivation of R, where σ is an automorphism of R, we mean an additive map $\delta: R \to R$ such that

$$\delta(xy) = \delta(x)y + \sigma(x)\delta(y) \text{ for } x, y \in R.$$

We call σ the associated automorphism of δ . For brevity, we also call δ a *skew* derivation by suppressing σ . Given $a \in R$, the map $\mathrm{ad}_{\sigma}(a) : x \in R \mapsto ax - \sigma(x)a$ defines a σ -derivation of R, called the inner σ -derivation defined by a. By a differential polynomial φ , we mean a generalized polynomial with its variables acted by composition products of automorphisms and skew derivations of R. (See [8–11].) We call φ linear in the variable x if $\varphi = \sum_i A_i \mu_i(x) B_i$, where A_i, B_i are differential polynomials containing no x and where μ_i are composition products of automorphisms and skew derivations of R. We call φ multi-linear if it is linear in all the variables it contains. We call φ linear it contains only one variable and is linear in this variable. If a differential polynomial φ vanishes for any evaluations of its variables in R, then we call φ a differential *identity* of R. An identity φ is called linear or multi-linear respectively if the differential polynomial φ is linear or multi-linear respectively. Our aim here is to investigate these identities. Let Q denote the left Martindale quotient ring of R. (See [1,18] for a definition.) As shown in [7–11], we have to work in Q as follows: Let $I \leq R$ denote that I is a two-sided ideal of Q. For each $a \in Q$, the family $\{a + I : 0 \neq I \leq R\}$ forms a neighborhood system of Q at the point a by the primeness of R. These neighborhood systems define a topology, called the *ideal* topology of Q. Clearly, an additive map $\theta: Q \to Q$ is continuous if and only if for any two-sided ideal $0 \neq I \trianglelefteq R$ there exists a two-sided ideal $0 \neq J \trianglelefteq R$ such that $\theta(J) \subseteq I$. An automorphism σ of Q is called *bi-continuous* if both σ and σ^{-1} are continuous. A skew derivation is called continuous if it is continuous and its associated automorphism is bi-continuous. Any automorphism of R can be extended uniquely to a bi-continuous automorphism of Q. Analogously, any skew derivation of R, together with its associated automorphism, can be extended uniquely to a continuous skew derivation of Q. So any differential polynomial of R extends to a unique differential polynomial of Q. By [22], any linear differential identity of R extends to a linear differential identity of Q in this way. It thus suffices to investigate linear differential identities of Q involving bi-continuous automorphisms and continuous skew derivations. So we set

 $\mathbb{A} :=$ the set of bi-continuous automorphisms of Q,

 $\mathbb{L}_{\sigma} := \text{the set of continuous } \sigma \text{-derivations of } Q \text{ for each } \sigma \in \mathbb{A}$ and

Download English Version:

https://daneshyari.com/en/article/4584124

Download Persian Version:

https://daneshyari.com/article/4584124

Daneshyari.com