

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Simple toroidal vertex algebras and their irreducible modules

Fei Kong^a, Haisheng Li^{b,1}, Shaobin Tan^{a,2}, Qing Wang^{a,*,3}

^a School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
 ^b Department of Mathematical Sciences, Rutgers University, Camden, NJ 08102, USA

ARTICLE INFO

Article history: Received 20 August 2014 Available online 30 June 2015 Communicated by Alberto Elduque

Keywords:
Toroidal vertex algebras
Irreducible modules

ABSTRACT

In this paper, we continue the study on toroidal vertex algebras initiated in [15], to study concrete toroidal vertex algebras associated to toroidal Lie algebra $L_r(\hat{\mathfrak{g}}) = \hat{\mathfrak{g}} \otimes$ L_r , where $\hat{\mathfrak{g}}$ is an untwisted affine Lie algebra and $L_r =$ $\mathbb{C}\left[t_1^{\pm 1},\ldots,t_r^{\pm 1}\right]$. We first construct an (r+1)-toroidal vertex algebra V(T,0) and show that the category of restricted $L_r(\hat{\mathfrak{g}})$ -modules is canonically isomorphic to that of V(T,0)modules. Let \mathfrak{c} denote the standard central element of $\hat{\mathfrak{g}}$ and set $S_{\mathfrak{c}} = U(L_r(\mathbb{C}\mathfrak{c}))$. We furthermore study a distinguished subalgebra of V(T,0), denoted by $V(S_{\mathfrak{c}},0)$. We show that (graded) simple quotient toroidal vertex algebras of $V(S_{\mathfrak{c}},0)$ are parametrized by a \mathbb{Z}^r -graded ring homomorphism ψ : $S_{\mathfrak{c}} \to L_r$ such that $\text{Im}\psi$ is a \mathbb{Z}^r -graded simple $S_{\mathfrak{c}}$ -module. Denote by $L(\psi,0)$ the simple quotient (r+1)-toroidal vertex algebra of $V(S_{\mathfrak{c}},0)$ associated to ψ . We determine for which ψ , $L(\psi,0)$ is an integrable $L_r(\hat{\mathfrak{g}})$ -module and we then classify irreducible $L(\psi,0)$ -modules for such a ψ . For our need, we also obtain various general results.

 $\ensuremath{{\odot}}$ 2015 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail address: qingwang@xmu.edu.cn (Q. Wang).

¹ Partially supported by NSA grant H98230-11-1-0161 and China NSF grant (No. 11128103).

² Partially supported by China NSF grant (No. 11471268).

³ Partially supported by China NSF grant (No. 11371024), Natural Science Foundation of Fujian Province (No. 2013J01018) and Fundamental Research Funds for the Central University (No. 2013121001).

1. Introduction

Let \mathfrak{g} be a finite-dimensional simple Lie algebra equipped with the normalized Killing form $\langle \cdot, \cdot \rangle$. Let $\hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C} \left[t_0^{\pm 1} \right] \oplus \mathbb{C} \mathfrak{c}$ be the untwisted affine Lie algebra. It is well-known (see [7,13]) that there exists a canonical vertex algebra $V_{\hat{\mathfrak{g}}}(\ell,0)$ associated to $\hat{\mathfrak{g}}$ for each $\ell \in \mathbb{C}$ and the category of $V_{\hat{\mathfrak{g}}}(\ell,0)$ -modules is canonically isomorphic to the category of restricted $\hat{\mathfrak{g}}$ -modules of level ℓ . Denote by $L_{\hat{\mathfrak{g}}}(\ell,0)$ the unique graded simple quotient vertex algebra of $V_{\hat{\mathfrak{g}}}(\ell,0)$. It was known (see [10]) that $L_{\hat{\mathfrak{g}}}(\ell,0)$ is an integrable $\hat{\mathfrak{g}}$ -module if and only if ℓ is a non-negative integer. Furthermore, it was known (see [7,3,13,17,18,4]) that if ℓ is a non-negative integer, the category of $L_{\hat{\mathfrak{g}}}(\ell,0)$ -modules is naturally isomorphic to the category of restricted integrable $\hat{\mathfrak{g}}$ -modules of level ℓ .

Toroidal Lie algebras, which are essentially central extensions of multi-loop Lie algebras, generalizing affine Kac-Moody Lie algebras, form a special family of infinite dimensional Lie algebras closely related to extended affine Lie algebras (see [1]). A natural connection of toroidal Lie algebras with vertex algebras has also been known (see [2]), which uses one-variable generating functions for toroidal Lie algebras. By considering multi-variable generating functions (cf. [8,9]), toroidal vertex algebras were introduced in [15], which generalize vertex algebras in a certain natural way.

The essence of an (r+1)-toroidal vertex algebra V is that to each vector $v \in V$, a multi-variable vertex operator $Y(v; x_0, \mathbf{x})$ is associated, which satisfies a Jacobi identity. It is important to note that for a vertex algebra $(V, Y, \mathbf{1})$, the so-called creation property states that

$$Y(v, x)\mathbf{1} \in V[[x]]$$
 and $(Y(v, x)\mathbf{1})|_{x=0} = v$ for $v \in V$,

which implies that V as a V-module is cyclic on the vacuum vector $\mathbf{1}$ and the vertex operator map $Y(\cdot,x)$ is always injective. However, this is not the case for an (r+1)-toroidal vertex algebra in general. For an (r+1)-toroidal vertex algebra V, denote by V^0 the submodule of the adjoint module V generated by $\mathbf{1}$, which is an (r+1)-toroidal vertex subalgebra. It was proved in [15] that V^0 has a canonical vertex algebra structure. To a certain extent, V^0 to V is the same as the core subalgebra to an extended affine Lie algebra (see [1]). In this paper, we explore V^0 more in various directions. In particular, we show that V^0 is a vertex \mathbb{Z}^r -graded algebra in a certain sense (see Section 3 for the definition). It is proved that if V is a simple (r+1)-toroidal vertex algebra, then V^0 is also a simple (r+1)-toroidal vertex algebra. Let L be any quotient (r+1)-toroidal vertex algebra of V. It is proved (see Proposition 2.26) that a V-module W is naturally an L-module if and only if W is naturally an L^0 -module.

In this paper, we also study (r + 1)-toroidal vertex algebras naturally arisen from toroidal Lie algebras. Specifically, we consider Lie algebra

$$\tau = \hat{\mathfrak{g}} \otimes \mathbb{C} \left[t_1^{\pm 1}, \dots, t_r^{\pm 1} \right], \tag{1.1}$$

Download English Version:

https://daneshyari.com/en/article/4584126

Download Persian Version:

https://daneshyari.com/article/4584126

<u>Daneshyari.com</u>