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The aim of this paper is to present a complete description of 
the structure of subsets S of an orderable group G satisfying 
|S2| = 3|S| − 2 and 〈S〉 is non-abelian.
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1. Introduction

Let G denote an arbitrary group (multiplicatively written). If S is a subset of G, we 
define its square S2 by the formula

S2 = {x1x2 | x1, x2 ∈ S}.

In the abelian context, G will usually be additively written and we shall rather speak of 
sumsets and specifically of the double of S, namely

2S = {x1 + x2 | x1, x2 ∈ S}.

Here, we are concerned with the following general problem: for two real numbers α ≥ 1
and β, determine the structure of S if S is a finite subset of a group G satisfying an 
inequality on cardinalities of the form

|S2| ≤ α|S| + β

when α is small and |S| is typically large.
Problems of this kind are called inverse problems of small doubling type in additive 

number theory. The coefficient α (or more precisely the ratio |S2|/|S|) is called the 
doubling coefficient of S. This type of problems became the most central issue in additive 
combinatorics. Inverse problems of small doubling type have been first investigated by 
G.A. Freiman very precisely in the additive group of the integers (see [4–7]) and by many 
other authors in general abelian groups, starting with M. Kneser [16] (see, for example, 
[15,17,1,23,14]). More recently, small doubling problems in non-necessarily abelian groups 
have been also studied, see [13,24] and [3] for recent surveys on these problems and [19]
and [26] for two important books on the subject.

It is easy to prove that if S is a finite subset of Z, then

2|S| − 1 ≤ |2S| ≤ |S|(|S| + 1)
2 .

Moreover |2S| = 2|S| −1 if and only if S is a (finite) arithmetic progression, that is, a set 
of the form

{a, a + q, a + 2q, . . . , a + (t− 1)q}

where a, q and t are three integers, t ≥ 1, q ≥ 0. The parameter t is called the size of 
the arithmetic progression and q its difference (we shall use ratio in the multiplicative 
notation). In the articles [4] and [5], G.A. Freiman proved the following more general 
results. The first result is referred to as the 3k − 4 theorem.

Theorem A. Let S be a finite set of integers with at least three elements. If |2S| ≤ 3|S| −4, 
then S is contained in an arithmetic progression of size |2S| − |S| + 1 ≤ 2|S| − 3.
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