Cohomological periodicities of crystallographic groups

Graham Ellis

School of Mathematics, National University of Ireland, Galway, Ireland

A R T I C L E I N F O

Article history:

Received 6 May 2015
Available online 9 October 2015
Communicated by Jon Carlson

Keywords:

Cohomology of groups
Crystallographic groups
Finite p-groups

Abstract

We observe that an n-dimensional crystallographic group G has periodic cohomology in degrees greater than n if it contains a torsion free finite index normal subgroup $S \unlhd G$ whose quotient G / S has periodic cohomology. We then consider a different type of periodicity. Namely, we provide hypotheses on a crystallographic group G that imply isomorphisms $H_{i}\left(G / \gamma_{c} T, \mathbb{F}\right) \cong H_{i}\left(G / \gamma_{c+d} T, \mathbb{F}\right)$ for \mathbb{F} the field of p elements and $\gamma_{c} T$ a term in the relative lower central series of the translation subgroup $T \leq G$. The latter periodicity provides a means of calculating the mod- p homology of certain infinite families of finite p-groups using a finite (machine) computation.

© 2015 Published by Elsevier Inc.

1. Introduction

An n-dimensional crystallographic group $G \leq \operatorname{Isom}\left(\mathbb{R}^{n}\right)$ is a discrete subgroup of the isometries of n-dimensional Euclidean space whose translations form a free abelian subgroup $T \leq G$ of dimension n. The translation subgroup T is a finite index normal subgroup of G and the quotient $P=G / T$ is called the point group. We describe two

[^0]cohomological periodicities arising in the context of crystallographic groups; both provide a means of calculating infinite families of cohomology groups from finite computations.

To describe the first periodicity we say that a $\mathbb{Z} G$-resolution R_{*} involving boundary homomorphisms ∂_{*} is periodic of period d in degrees greater than m if there is equality of modules $R_{i}=R_{i+d}$ and boundary homomorphisms $\partial_{i+1}=\partial_{i+1+d}$ for all $i \geq m$. When $m=0$ we simply say that such a resolution is periodic.

Proposition 1. Let G be an n-dimensional crystallographic group with a torsion free normal subgroup $S \unlhd G$ of finite index whose quotient $Q=G / S$ admits a periodic free $\mathbb{Z} Q$-resolution of \mathbb{Z} of period d. Then G admits a free $\mathbb{Z} G$-resolution of \mathbb{Z} which is periodic of period d in degrees greater than n.

Proposition 1 allows one to calculate the integral cohomology of certain crystallographic groups in all degrees by performing a computer computation of the integral cohomology in just the first few degrees. As an illustration consider the group $G=$ SpaceGroupBBNWZ $(2,10)$ arising as the tenth group of dimension 2 in the Cryst [6] library of crystallographic groups available as part of the GAP [8] system for computational algebra. This group is generated by the four isometries

$$
\begin{array}{lll}
\binom{x}{y} \mapsto\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{x}{y}, & \binom{x}{y} \mapsto\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}, \\
\binom{x}{y} \mapsto\binom{x+1}{y}, & \binom{x}{y} \mapsto\binom{x}{y+1} .
\end{array}
$$

The point group in this case is cyclic of order 4 and admits a periodic resolution of period 2. Using the homological algebra package HAP [7] for GAP to compute the integral homology of G in degrees up to and including 4, one obtains from Proposition 1 with $S=T$ that

$$
H_{i}(G, \mathbb{Z}) \cong \begin{cases}\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}, & i=1 \\ \mathbb{Z}, & i=2 \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}, & \text { odd } i \geq 3 \\ 0, & \text { even } i \geq 4\end{cases}
$$

In order to compute, say, $H_{3}(G, \mathbb{Z})$ in GAP one can use the following commands.
gap> G:=SpaceGroupBBNWZ $(2,10)$; ;
gap> GroupHomology (G,3);
[2, 4, 4]
The second type of periodicity concerns the lower central series of T relative to G, defined by setting $\gamma_{1} T=T$ and $\gamma_{c+1} T=\left[\gamma_{c} T, G\right]$ for $c \geq 1$. There is an action of $P=G / T$ on the free abelian group $\gamma_{c} T$ given by conjugation, $P \times \gamma_{c} T \rightarrow \gamma_{c} T,(g T, a) \mapsto g a g^{-1}$.

https://daneshyari.com/en/article/4584167

Download Persian Version:

https://daneshyari.com/article/4584167

Daneshyari.com

[^0]: E-mail address: graham.ellis@nuigalway.ie.

