

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Transitive representations of inverse semigroups

Boris M. Schein

Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, USA

ARTICLE INFO

Article history: Received 4 April 2013 Available online 25 August 2015 Communicated by Louis Rowen

MSC: primary 20M18, 20M30

Keywords: Inverse semigroups Filters in inverse semigroups Transitive representations

ABSTRACT

While every group is isomorphic to a transitive group of permutations, the analogous property fails for inverse semigroups: not all inverse semigroups are isomorphic to transitive inverse semigroups of one-to-one partial transformations of a set. We describe those inverse semigroups that are.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

This paper consists of three sections and an afterword. Section 1 explains a problem that was raised by Wagner between 1948 and 1952 and is solved in this paper. Section 2 explains non-algebraic heuristic ideas that led to the solution. Section 3 contains the main result and all necessary proofs.

We begin with definitions that make this paper reasonably self-contained. Different categories of readers may be more or less familiar with some of them.

A semigroup is a nonempty set with associative multiplication. If S is a semigroup and sts = s, tst = t for $s, t \in S$, then t is called an *inverse* for s. A semigroup is regular

E-mail address: bschein@uark.edu.

if each of its elements has an inverse. A semigroup is *inverse* if each of its elements has a *uniquely determined* inverse. If S is inverse and $s \in S$, then s^{-1} denotes the unique inverse of s. Alternatively, inverse semigroups are precisely regular semigroups with commuting idempotent elements. A nonempty subset T of an inverse semigroup S is called an *inverse subsemigroup* of S if T is closed under multiplication and inversion, that is, $(\forall s, t)[s, t \in T \Rightarrow st \in T]$ and $(\forall s)[s \in T \Rightarrow s^{-1} \in T]$.

A partial transformation of a set A is a mapping φ of a subset B of A into A. Thus $\varphi(b)$ exists for all $b \in B$ and is not defined for $b \notin B$. We will write $b\varphi$ rather than $\varphi(b)$. We say that B is the first projection (or the domain) of φ and write $B = pr_1\varphi$. We say that φ is one-to-one if $a\varphi = b\varphi \Rightarrow a = b$ for all $a, b \in B$. Let \mathcal{I}_A denote the set of all one-to-one partial transformations of A. It is clear (and well known) that \mathcal{I}_A is closed under the usual composition of partial transformations: $\varphi, \psi \in \mathcal{I}_A \Rightarrow \varphi \circ \psi \in \mathcal{I}_A$. Here we may omit \circ and write merely $\varphi\psi$. Then $a(\varphi\psi)=(a\varphi)\psi$ for every $a\in A$ such that both $a\varphi$ and $(a\varphi)\psi$ are defined, that is, $a\in pr_1\varphi$ and $a\varphi=\varphi(a)\in pr_1\psi$. In particular, $\varphi\psi$ may be the empty partial transformation \varnothing . This empty partial transformation is obviously one-to-one and hence belongs to \mathcal{I}_A . Thus \mathcal{I}_A is a semigroup of partial transformations. Also, $\varphi \in \mathcal{I}_A \Rightarrow \varphi^{-1} \in \mathcal{I}_A$. Here φ^{-1} is the *inverse* transformation for φ , that is, $(\forall a, b \in A)[a\varphi^{-1} = b \Leftrightarrow b\varphi = a]$. Clearly, φ^{-1} is the inverse for φ in the sense of the theory of inverse semigroups because $\varphi \varphi^{-1} \varphi = \varphi$ and $\varphi^{-1} \varphi \varphi^{-1} = \varphi$ φ^{-1} for every $\varphi \in \mathcal{I}_A$. We call \mathcal{I}_A the symmetric inverse semigroup on A. Inverse subsemigroups of \mathcal{I}_A are called inverse semigroups of one-to-one partial transformations of A.

Definition 1. An inverse semigroup Φ of one-to-one partial transformations of a set A is called *transitive* if, for every $a, b \in A$, there exists $\varphi \in \Phi$ such that $a\varphi = b$. An inverse semigroup is called $noble^2$ if it is isomorphic to a transitive inverse semigroup of one-to-one partial transformations of a set. Observe that a trivial group and a two-element semilattice are both noble because they are isomorphic to transitive inverse subsemigroups of $\mathcal{I}(A)$, where A is a singleton $\{a\}$. We exclude a single-element group and a two-element semilattice from our further considerations.

In other words, Φ is transitive when $\bigcup \Phi = A \times A$, where $\bigcup \Phi$ denotes the settheoretical union of all elements of Φ (recall that each element of Φ is a special subset of $A \times A$).

Observe that *permutations* of A (that is, one-to-one mappings of A onto itself) form an inverse subsemigroup \mathcal{G}_A of \mathcal{I}_A . Clearly, \mathcal{G}_A is the symmetric group of permutations of A.

¹ We denote the empty partial transformation by the same symbol as the empty set because, for us, every partial transformation φ is a set. Namely, $\varphi = \{(a,b) \in A \times A \mid a\varphi = b\}$. From this point of view the empty partial transformation is the empty set.

² What is so noble in noble inverse semigroups? We need a term for them, and the word "noble" has already been used in [9].

Download English Version:

https://daneshyari.com/en/article/4584203

Download Persian Version:

https://daneshyari.com/article/4584203

Daneshyari.com