

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The largest strong left quotient ring of a ring

V.V. Bavula

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK

ARTICLE INFO

Article history: Received 9 September 2014 Available online 26 May 2015 Communicated by Louis Rowen

MSC: 16S8516U20 16P5016P60 16P20

Keywords: The (largest) strong left quotient ring of a ring Goldie's Theorem The strong left localization radical The left quotient ring of a ring The largest left quotient ring of a ring A maximal left denominator set The left localization radical of a ring

Contents

1. Introduction . . 2 2. Preliminaries, the largest strong left denominator set $T_l(R)$ of R and its characterizations. 63.

http://dx.doi.org/10.1016/j.jalgebra.2015.04.037 0021-8693/© 2015 Elsevier Inc. All rights reserved.

ABSTRACT

For an arbitrary ring R, the largest strong left quotient ring $Q_l^s(R)$ of R and the strong left localization radical \mathfrak{l}_B^s are introduced and their properties are studied in detail. In particular, it is proved that $Q_l^s(Q_l^s(R)) \simeq Q_l^s(R), \ \mathfrak{l}_{R/\mathfrak{l}_p^s}^s = 0$ and a criterion is given for the ring $Q_l^s(R)$ to be a semisimple ring. There is a canonical homomorphism from the classical left quotient ring $Q_{l,cl}(R)$ to $Q_l^s(R)$ which is not an isomorphism, in general. The objects $Q_l^s(R)$ and l_R^s are explicitly described for several large classes of rings (semiprime left Goldie ring, left Artinian rings, rings with left Artinian left quotient ring, etc.). © 2015 Elsevier Inc. All rights reserved.

ALGEBRA

E-mail address: v.bavula@sheffield.ac.uk.

4.	The largest	strong	quotien	t rin	g of	a r	ring		 		 	 	 	 		 		22
5.	Examples .							 	 		 	 	 	 		 		28
Ackno	wledgments							 	 		 	 	 	 		 		31
Refere	ences							 	 		 	 	 	 		 		31

1. Introduction

The aim of the paper is, for an arbitrary ring R, to introduce new concepts: the largest strong left denominator set $T_l(R)$ of R, the largest strong left quotient ring $Q_l^s(R) := T_l(R)^{-1}R$ of R and the strong left localization radical \mathfrak{l}_R^s of R, and to study their properties.

In this paper, the following notation is fixed:

- R is a ring with 1 and R^* is its group of units;
- $C = C_R$ is the set of *regular* elements of the ring R (i.e. C is the set of non-zero-divisors of the ring R);
- C_R is the set of *left regular* elements of the ring R, i.e. $C_R := \{c \in R \mid \ker(\cdot c) = 0\}$ where $\cdot c : R \to R, r \mapsto rc$;
- Q = Q_{l,cl}(R) := C⁻¹R is the left quotient ring (the classical left ring of fractions) of the ring R (if it exists, i.e. if C is a left Ore set) and Q* is the group of units of Q;
- $\operatorname{Ore}_l(R) := \{S \mid S \text{ is a left Ore set in } R\};$
- $\operatorname{Den}_l(R) := \{ S \mid S \text{ is a left denominator set in } R \};$
- $\operatorname{Ass}_{l}(R) := \{\operatorname{ass}(S) | S \in \operatorname{Den}_{l}(R)\}$ where $\operatorname{ass}(S) := \{r \in R | sr = 0 \text{ for some } s = s(r) \in S\};$
- Den_l(R, a) is the set of left denominator sets S of R with ass(S) = a where a is an ideal of R;
- $S_{\mathfrak{a}} = S_{\mathfrak{a}}(R) = S_{l,\mathfrak{a}}(R)$ is the largest element of the poset $(\text{Den}_{l}(R,\mathfrak{a}),\subseteq)$ and $Q_{\mathfrak{a}}(R) := Q_{l,\mathfrak{a}}(R) := S_{\mathfrak{a}}^{-1}R$ is the largest left quotient ring associated with \mathfrak{a} . The fact that $S_{\mathfrak{a}}$ exists is proven in [3, Theorem 2.1] (but also see Lemma 2.5 below for the easy proof in other contexts);
- In particular, $S_0 = S_0(R) = S_{l,0}(R)$ is the largest element of the poset $(\text{Den}_l(R,0), \subseteq)$, i.e. the largest regular left Ore set of R, and $Q_l(R) := S_0^{-1}R$ is the largest left quotient ring of R [3];
- max.Den_l(R) is the set of maximal left denominator sets of R (it is always a nonempty set, see [3], or Lemma 2.5 below for the proof).

The largest strong left quotient ring of a ring. Consider the following subsets of a ring *R*: The sets

$$\mathcal{L}_{l}^{s}(R) := \bigcap_{S \in \max. \operatorname{Den}_{l}(R)} S \stackrel{\operatorname{Proposition 2.3.(1)}}{=} \{ c \in R \mid \frac{c}{1} \in (S^{-1}R)^{*}$$

for all $S \in \max. \operatorname{Den}_l(R)$ },

Download English Version:

https://daneshyari.com/en/article/4584229

Download Persian Version:

https://daneshyari.com/article/4584229

Daneshyari.com