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1. Introduction

The aim of the paper is, for an arbitrary ring R, to introduce new concepts: the
largest strong left demominator set Ti(R) of R, the largest strong left quotient ring
Qi (R) :== T)(R)"'R of R and the strong left localization radical 5 of R, and to study
their properties.

In this paper, the following notation is fixed:

R is a ring with 1 and R* is its group of units;

o C = Cpis the set of regular elements of the ring R (i.e. C is the set of non-zero-divisors
of the ring R);

e 'Cp is the set of left reqular elements of the ring R, i.e. 'Cr := {c € R|ker(.c) = 0}
where .c: R — R, r — r¢;

e Q=Qa(R):=C'Ris the left quotient ring (the classical left ring of fractions) of
the ring R (if it exists, i.e. if C is a left Ore set) and Q* is the group of units of Q;

o Ore(R):={S|S is a left Ore set in R};

o Deny(R) :={S]|S is a left denominator set in R};

o Assi(R) := {ass(S)|S € Den;(R)} where ass(S) := {r € R|sr = 0 for some s =
s(r) € S}

o Deny(R,a) is the set of left denominator sets S of R with ass(S) = a where a is an
ideal of R;

e Sy = Sa(R) = Sia(R) is the largest element of the poset (Den;(R,a),C) and
Qa(R) := Qra(R) := S;'R is the largest left quotient ring associated with a. The
fact that S, exists is proven in [3, Theorem 2.1 (but also see Lemma 2.5 below for
the easy proof in other contexts);

o In particular, So = So(R) = S;o(R) is the largest element of the poset
(Deny(R,0),C), i.e. the largest reqular left Ore set of R, and @Q;(R) := So_lR is
the largest left quotient ring of R [3];

o max.Den;(R) is the set of maximal left denominator sets of R (it is always a non-

empty set, see [3], or Lemma 2.5 below for the proof).

The largest strong left quotient ring of a ring. Consider the following subsets of a ring R:
The sets

L (R) := N S

Semax.Den; (R)

Proposition 2.3.(1)

{ceR| % € (S'R)"

for all S € max.Den;(R)},
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