The largest strong left quotient ring of a ring

V.V. Bavula
Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK

A R T I C L E I N F O

Article history:

Received 9 September 2014
Available online 26 May 2015
Communicated by Louis Rowen

MSC:

16S85
16U20
16P50
16P60
16P20

Keywords:

The (largest) strong left quotient ring of a ring
Goldie's Theorem
The strong left localization radical The left quotient ring of a ring
The largest left quotient ring of a ring
A maximal left denominator set The left localization radical of a ring

A B S T R A C T

For an arbitrary ring R, the largest strong left quotient ring $Q_{l}^{s}(R)$ of R and the strong left localization radical \mathfrak{l}_{R}^{s} are introduced and their properties are studied in detail. In particular, it is proved that $Q_{l}^{s}\left(Q_{l}^{s}(R)\right) \simeq Q_{l}^{s}(R), \mathfrak{l}_{R / \mathfrak{l}_{R}^{s}}^{s}=0$ and a criterion is given for the ring $Q_{l}^{s}(R)$ to be a semisimple ring. There is a canonical homomorphism from the classical left quotient ring $Q_{l, c l}(R)$ to $Q_{l}^{s}(R)$ which is not an isomorphism, in general. The objects $Q_{l}^{s}(R)$ and \mathfrak{l}_{R}^{s} are explicitly described for several large classes of rings (semiprime left Goldie ring, left Artinian rings, rings with left Artinian left quotient ring, etc.).
© 2015 Elsevier Inc. All rights reserved.

Contents

1. Introduction 2
2. Preliminaries, the largest strong left denominator set $T_{l}(R)$ of R and its characterizations 6
3. The largest strong left quotient ring of a ring and its properties 15

[^0]4. The largest strong quotient ring of a ring 22
5. Examples 28
Acknowledgments 31
References 31

1. Introduction

The aim of the paper is, for an arbitrary ring R, to introduce new concepts: the largest strong left denominator set $T_{l}(R)$ of R, the largest strong left quotient ring $Q_{l}^{s}(R):=T_{l}(R)^{-1} R$ of R and the strong left localization radical \mathfrak{l}_{R}^{s} of R, and to study their properties.

In this paper, the following notation is fixed:

- R is a ring with 1 and R^{*} is its group of units;
- $\mathcal{C}=\mathcal{C}_{R}$ is the set of regular elements of the ring R (i.e. \mathcal{C} is the set of non-zero-divisors of the ring R);
- ${ }^{\prime} \mathcal{C}_{R}$ is the set of left regular elements of the $\operatorname{ring} R$, i.e. ${ }^{\prime} \mathcal{C}_{R}:=\{c \in R \mid \operatorname{ker}(\cdot c)=0\}$ where $\cdot c: R \rightarrow R, r \mapsto r c$;
- $Q=Q_{l, c l}(R):=\mathcal{C}^{-1} R$ is the left quotient ring (the classical left ring of fractions) of the ring R (if it exists, i.e. if \mathcal{C} is a left Ore set) and Q^{*} is the group of units of Q;
- $\operatorname{Ore}_{l}(R):=\{S \mid S$ is a left Ore set in $R\}$;
- $\operatorname{Den}_{l}(R):=\{S \mid S$ is a left denominator set in $R\}$;
- $\operatorname{Ass}_{l}(R):=\left\{\operatorname{ass}(S) \mid S \in \operatorname{Den}_{l}(R)\right\}$ where $\operatorname{ass}(S):=\{r \in R \mid s r=0$ for some $s=$ $s(r) \in S\} ;$
- $\operatorname{Den}_{l}(R, \mathfrak{a})$ is the set of left denominator sets S of R with $\operatorname{ass}(S)=\mathfrak{a}$ where \mathfrak{a} is an ideal of R;
- $S_{\mathfrak{a}}=S_{\mathfrak{a}}(R)=S_{l, \mathfrak{a}}(R)$ is the largest element of the poset $\left(\operatorname{Den}_{l}(R, \mathfrak{a}), \subseteq\right)$ and $Q_{\mathfrak{a}}(R):=Q_{l, \mathfrak{a}}(R):=S_{\mathfrak{a}}^{-1} R$ is the largest left quotient ring associated with \mathfrak{a}. The fact that $S_{\mathfrak{a}}$ exists is proven in [3, Theorem 2.1] (but also see Lemma 2.5 below for the easy proof in other contexts);
- In particular, $S_{0}=S_{0}(R)=S_{l, 0}(R)$ is the largest element of the poset $\left(\operatorname{Den}_{l}(R, 0), \subseteq\right)$, i.e. the largest regular left Ore set of R, and $Q_{l}(R):=S_{0}^{-1} R$ is the largest left quotient ring of R [3];
- max. $\operatorname{Den}_{l}(R)$ is the set of maximal left denominator sets of R (it is always a nonempty set, see [3], or Lemma 2.5 below for the proof).

The largest strong left quotient ring of a ring. Consider the following subsets of a ring R : The sets

$$
\mathcal{L}_{l}^{s}(R):=\bigcap_{S \in \max ^{2} \cdot D_{n-n}^{l}(R)} S \stackrel{\text { Proposition 2.3.(1) }}{=}\left\{c \in R \left\lvert\, \frac{c}{1} \in\left(S^{-1} R\right)^{*}\right.\right.
$$

https://daneshyari.com/en/article/4584229

Download Persian Version:

https://daneshyari.com/article/4584229

Daneshyari.com

[^0]: E-mail address: v.bavula@sheffield.ac.uk.

